TRY THIS MODEL
Drop image here to test
blind-curve-accident/3041 (latest)
The training set is empty.
The validation set is empty.
The testing set is empty.
Classes
Layers
{ "accumulator": null, "annotation_jobs": [ "494d4BkxdnMx3oahIA6u/8QcPUf4hkYDzy3m57fTy", "DfU9yY9p0O7KQjSZe4SK/6AX9lHkR71p5pw5nMPHa", "9i0kmI3wgWSdPwByrbm6/4RcR2QjqiNBiL7VmAcmJ" ], "annotations": { "vehicle": { "original": { "annotation": "0 0.4098557692307692 0.49038461538461536 0.29447115384615385 0.3269230769230769\n0 0.15384615384615385 0.6442307692307693 0.3076923076923077 0.6971153846153846\n0 0.8701923076923077 0.41466346153846156 0.13221153846153846 0.19471153846153846", "format": "txt", "source": "YoloDarknet" }, "converted": "{\"key\":\"646_png.rf.1801f1147147cb7a54b0bc09c03c0dff.jpg\",\"boxes\":[{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":170.5,\"y\":204,\"width\":123,\"height\":136},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":64,\"y\":268,\"width\":128,\"height\":290},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":362,\"y\":172.5,\"width\":55,\"height\":81}],\"width\":416,\"height\":416}", "used": true, "key": [ "646_png.rf.1801f1147147cb7a54b0bc09c03c0dff.jpg", "646_png.rf.1801f1147147cb7a54b0bc09c03c0dff.jpeg", "646_png.rf.1801f1147147cb7a54b0bc09c03c0dff.png", "646_png.rf.1801f1147147cb7a54b0bc09c03c0dff.bmp" ] }, "vehicle-FxUj": { "original": { "annotation": "0 0.4098557692307692 0.49038461538461536 0.29447115384615385 0.3269230769230769\n0 0.15384615384615385 0.6442307692307693 0.3076923076923077 0.6971153846153846\n0 0.8701923076923077 0.41466346153846156 0.13221153846153846 0.19471153846153846", "format": "txt", "source": "YoloDarknet" }, "converted": "{\"key\":\"646_png.rf.1801f1147147cb7a54b0bc09c03c0dff.jpg\",\"boxes\":[{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":170.5,\"y\":204,\"width\":123,\"height\":136},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":64,\"y\":268,\"width\":128,\"height\":290},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":362,\"y\":172.5,\"width\":55,\"height\":81}],\"width\":416,\"height\":416}", "used": true, "key": [ "646_png.rf.1801f1147147cb7a54b0bc09c03c0dff.jpg", "646_png.rf.1801f1147147cb7a54b0bc09c03c0dff.jpeg", "646_png.rf.1801f1147147cb7a54b0bc09c03c0dff.png", "646_png.rf.1801f1147147cb7a54b0bc09c03c0dff.bmp" ] }, "vehicles": { "original": { "annotation": "0 0.4098557692307692 0.49038461538461536 0.29447115384615385 0.3269230769230769\n0 0.15384615384615385 0.6442307692307693 0.3076923076923077 0.6971153846153846\n0 0.8701923076923077 0.41466346153846156 0.13221153846153846 0.19471153846153846", "format": "txt", "source": "YoloDarknet" }, "converted": "{\"key\":\"646_png.rf.1801f1147147cb7a54b0bc09c03c0dff.jpg\",\"boxes\":[{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":170.5,\"y\":204,\"width\":123,\"height\":136},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":64,\"y\":268,\"width\":128,\"height\":290},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":362,\"y\":172.5,\"width\":55,\"height\":81}],\"width\":416,\"height\":416}", "used": true, "key": [ "646_png.rf.1801f1147147cb7a54b0bc09c03c0dff.jpg", "646_png.rf.1801f1147147cb7a54b0bc09c03c0dff.jpeg", "646_png.rf.1801f1147147cb7a54b0bc09c03c0dff.png", "646_png.rf.1801f1147147cb7a54b0bc09c03c0dff.bmp" ] } }, "batches": [], "camera": null, "classes": [ "vehicle", "vehicle-FxUj", "vehicles" ], "created": { "_seconds": 1701497735, "_nanoseconds": 185000000 }, "datasets": [ "DfU9yY9p0O7KQjSZe4SK", "9i0kmI3wgWSdPwByrbm6" ], "extension": "jpg", "hashes": [ "cffe473824f40de1728f33f21685f95e" ], "height": 416, "id": "CW7KstP5wpSFFcDxWKGW", "label": [ "Unlabeled" ], "metadata": { "no": "metadata" }, "name": "646_png.jpg", "owner": "26D5fqP0Y2Sv8oseGD5mV8IfSvy2", "projects": [ "DfU9yY9p0O7KQjSZe4SK", "9i0kmI3wgWSdPwByrbm6" ], "r": 0.06867233485938522, "split": "valid", "split.494d4BkxdnMx3oahIA6u": "valid", "split.9i0kmI3wgWSdPwByrbm6": "valid", "split.DfU9yY9p0O7KQjSZe4SK": "valid", "tags": [ "494d4BkxdnMx3oahIA6u:status:approved", "DfU9yY9p0O7KQjSZe4SK:status:approved", "9i0kmI3wgWSdPwByrbm6:status:approved" ], "updated": { "_seconds": 1706676585, "_nanoseconds": 680000000 }, "updatedDate": "Jan 31, 2024", "updatedTime": "4:49AM", "updatedTimezone": "+00:00", "uploader": "26D5fqP0Y2Sv8oseGD5mV8IfSvy2", "width": 416 }
{ "boxes": [ { "label": "Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection", "x": 170.5, "y": 204, "width": 123, "height": 136 }, { "label": "Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection", "x": 64, "y": 268, "width": 128, "height": 290 }, { "label": "Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection", "x": 362, "y": 172.5, "width": 55, "height": 81 } ], "height": 416, "key": "646_png.rf.1801f1147147cb7a54b0bc09c03c0dff.jpg", "width": 416 }
Annotation Editor
Smart Polygon