Images

Train 1243
Valid 118
Test 64
Default 0
Load More...

Similar Projects

See More
blind curve accident
Annotate
Show/hide annotations(H)
valid
Labels
Attributes
Raw Data

Annotations

Group:
vehicle-FxUj

Classes

Layers

 
Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection
2

Unused Classes

* collaborate with your team on computer vision projects
==============================
Roboflow is an end-to-end computer vision platform that helps you
This dataset was exported via roboflow.com on November 25, 2023 at 4:44 PM GMT
car
heavy vehicle
lightvehicle

Tags

No Tags Applied
Type and select tags below to add them to the image.

Attributes

319.jpg

416x416
0.17MP

Updated Jan 31, 2024

4:49AM
GMT+00:00

Validation Set

Annotation History

Loading...

Raw Data

Source Data

                            {
    "accumulator": null,
    "annotation_jobs": [
        "494d4BkxdnMx3oahIA6u/8QcPUf4hkYDzy3m57fTy",
        "DfU9yY9p0O7KQjSZe4SK/6AX9lHkR71p5pw5nMPHa",
        "9i0kmI3wgWSdPwByrbm6/4RcR2QjqiNBiL7VmAcmJ"
    ],
    "annotations": {
        "vehicle": {
            "original": {
                "annotation": "0 0.7704326923076923 0.17668269230769232 0.18509615384615385 0.2860576923076923\n0 0.9326923076923077 0.859375 0.12980769230769232 0.2764423076923077",
                "format": "txt",
                "source": "YoloDarknet"
            },
            "converted": "{\"key\":\"319_jpg.rf.0fa868711efa4bb8957294d13e23b43a.jpg\",\"boxes\":[{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":320.5,\"y\":73.5,\"width\":77,\"height\":119},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":388,\"y\":357.5,\"width\":54,\"height\":115}],\"width\":416,\"height\":416}",
            "used": true,
            "key": [
                "319_jpg.rf.0fa868711efa4bb8957294d13e23b43a.jpg",
                "319_jpg.rf.0fa868711efa4bb8957294d13e23b43a.jpeg",
                "319_jpg.rf.0fa868711efa4bb8957294d13e23b43a.png",
                "319_jpg.rf.0fa868711efa4bb8957294d13e23b43a.bmp"
            ]
        },
        "vehicle-FxUj": {
            "original": {
                "annotation": "0 0.7704326923076923 0.17668269230769232 0.18509615384615385 0.2860576923076923\n0 0.9326923076923077 0.859375 0.12980769230769232 0.2764423076923077",
                "format": "txt",
                "source": "YoloDarknet"
            },
            "converted": "{\"key\":\"319_jpg.rf.0fa868711efa4bb8957294d13e23b43a.jpg\",\"boxes\":[{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":320.5,\"y\":73.5,\"width\":77,\"height\":119},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":388,\"y\":357.5,\"width\":54,\"height\":115}],\"width\":416,\"height\":416}",
            "used": true,
            "key": [
                "319_jpg.rf.0fa868711efa4bb8957294d13e23b43a.jpg",
                "319_jpg.rf.0fa868711efa4bb8957294d13e23b43a.jpeg",
                "319_jpg.rf.0fa868711efa4bb8957294d13e23b43a.png",
                "319_jpg.rf.0fa868711efa4bb8957294d13e23b43a.bmp"
            ]
        },
        "vehicles": {
            "original": {
                "annotation": "0 0.7704326923076923 0.17668269230769232 0.18509615384615385 0.2860576923076923\n0 0.9326923076923077 0.859375 0.12980769230769232 0.2764423076923077",
                "format": "txt",
                "source": "YoloDarknet"
            },
            "converted": "{\"key\":\"319_jpg.rf.0fa868711efa4bb8957294d13e23b43a.jpg\",\"boxes\":[{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":320.5,\"y\":73.5,\"width\":77,\"height\":119},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":388,\"y\":357.5,\"width\":54,\"height\":115}],\"width\":416,\"height\":416}",
            "used": true,
            "key": [
                "319_jpg.rf.0fa868711efa4bb8957294d13e23b43a.jpg",
                "319_jpg.rf.0fa868711efa4bb8957294d13e23b43a.jpeg",
                "319_jpg.rf.0fa868711efa4bb8957294d13e23b43a.png",
                "319_jpg.rf.0fa868711efa4bb8957294d13e23b43a.bmp"
            ]
        }
    },
    "batches": [],
    "camera": null,
    "classes": [
        "vehicle",
        "vehicle-FxUj",
        "vehicles"
    ],
    "created": {
        "_seconds": 1701497736,
        "_nanoseconds": 496000000
    },
    "datasets": [
        "DfU9yY9p0O7KQjSZe4SK",
        "9i0kmI3wgWSdPwByrbm6"
    ],
    "extension": "jpg",
    "hashes": [
        "0fd0660f0bd289a70d49b0beb40c9c31"
    ],
    "height": 416,
    "id": "1WSwxClFPgGjgTvD2gyz",
    "label": [
        "Unlabeled"
    ],
    "metadata": {
        "no": "metadata"
    },
    "name": "319.jpg",
    "owner": "26D5fqP0Y2Sv8oseGD5mV8IfSvy2",
    "projects": [
        "DfU9yY9p0O7KQjSZe4SK",
        "9i0kmI3wgWSdPwByrbm6"
    ],
    "r": 0.02485284499672989,
    "split": "valid",
    "split.494d4BkxdnMx3oahIA6u": "valid",
    "split.9i0kmI3wgWSdPwByrbm6": "valid",
    "split.DfU9yY9p0O7KQjSZe4SK": "valid",
    "tags": [
        "494d4BkxdnMx3oahIA6u:status:approved",
        "DfU9yY9p0O7KQjSZe4SK:status:approved",
        "9i0kmI3wgWSdPwByrbm6:status:approved"
    ],
    "updated": {
        "_seconds": 1706676587,
        "_nanoseconds": 222000000
    },
    "updatedDate": "Jan 31, 2024",
    "updatedTime": "4:49AM",
    "updatedTimezone": "+00:00",
    "uploader": "26D5fqP0Y2Sv8oseGD5mV8IfSvy2",
    "width": 416
}
                            
                            

Annotation Data

{
    "boxes": [
        {
            "label": "Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection",
            "x": 320.5,
            "y": 73.5,
            "width": 77,
            "height": 119
        },
        {
            "label": "Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection",
            "x": 388,
            "y": 357.5,
            "width": 54,
            "height": 115
        }
    ],
    "height": 416,
    "key": "319_jpg.rf.0fa868711efa4bb8957294d13e23b43a.jpg",
    "width": 416
}
                                

                                

Annotation Editor

Delete
Save (Enter)

Smart Polygon

Click inside to remove area or outside to expand.
Undo
Redo
Simplify
Simple Complex
Delete
Finish (Enter)
270%
Reset