Images

Train 1243
Valid 118
Test 64
Default 0
Load More...

Similar Projects

See More
blind curve accident
Annotate
Show/hide annotations(H)
test
Labels
Attributes
Raw Data

Annotations

Group:
vehicle-FxUj

Classes

Layers

 
Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection
5

Unused Classes

* collaborate with your team on computer vision projects
==============================
Roboflow is an end-to-end computer vision platform that helps you
This dataset was exported via roboflow.com on November 25, 2023 at 4:44 PM GMT
car
heavy vehicle
lightvehicle

Tags

No Tags Applied
Type and select tags below to add them to the image.

Attributes

631_png.jpg

416x416
0.17MP

Updated Jan 31, 2024

4:49AM
GMT+00:00

Testing Set

Annotation History

Loading...

Raw Data

Source Data

                            {
    "accumulator": null,
    "annotation_jobs": [
        "494d4BkxdnMx3oahIA6u/8QcPUf4hkYDzy3m57fTy",
        "DfU9yY9p0O7KQjSZe4SK/6AX9lHkR71p5pw5nMPHa",
        "9i0kmI3wgWSdPwByrbm6/4RcR2QjqiNBiL7VmAcmJ"
    ],
    "annotations": {
        "vehicle": {
            "original": {
                "annotation": "0 0.6274038461538461 0.5072115384615384 0.3112980769230769 0.4026442307692308\n0 0.3605769230769231 0.42427884615384615 0.23798076923076922 0.30288461538461536\n0 0.7980769230769231 0.36538461538461536 0.10576923076923077 0.15384615384615385\n0 0.9194711538461539 0.359375 0.10817307692307693 0.140625\n0 0.9807692307692307 0.3161057692307692 0.03365384615384615 0.07451923076923077",
                "format": "txt",
                "source": "YoloDarknet"
            },
            "converted": "{\"key\":\"631_png.rf.67aebef820f800867176eb670f562eff.jpg\",\"boxes\":[{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":261,\"y\":211,\"width\":130,\"height\":168},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":150,\"y\":176.5,\"width\":99,\"height\":126},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":332,\"y\":152,\"width\":44,\"height\":64},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":382.5,\"y\":149.5,\"width\":45,\"height\":59},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":408,\"y\":131.5,\"width\":14,\"height\":31}],\"width\":416,\"height\":416}",
            "used": true,
            "key": [
                "631_png.rf.67aebef820f800867176eb670f562eff.jpg",
                "631_png.rf.67aebef820f800867176eb670f562eff.jpeg",
                "631_png.rf.67aebef820f800867176eb670f562eff.png",
                "631_png.rf.67aebef820f800867176eb670f562eff.bmp"
            ]
        },
        "vehicle-FxUj": {
            "original": {
                "annotation": "0 0.6274038461538461 0.5072115384615384 0.3112980769230769 0.4026442307692308\n0 0.3605769230769231 0.42427884615384615 0.23798076923076922 0.30288461538461536\n0 0.7980769230769231 0.36538461538461536 0.10576923076923077 0.15384615384615385\n0 0.9194711538461539 0.359375 0.10817307692307693 0.140625\n0 0.9807692307692307 0.3161057692307692 0.03365384615384615 0.07451923076923077",
                "format": "txt",
                "source": "YoloDarknet"
            },
            "converted": "{\"key\":\"631_png.rf.67aebef820f800867176eb670f562eff.jpg\",\"boxes\":[{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":261,\"y\":211,\"width\":130,\"height\":168},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":150,\"y\":176.5,\"width\":99,\"height\":126},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":332,\"y\":152,\"width\":44,\"height\":64},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":382.5,\"y\":149.5,\"width\":45,\"height\":59},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":408,\"y\":131.5,\"width\":14,\"height\":31}],\"width\":416,\"height\":416}",
            "used": true,
            "key": [
                "631_png.rf.67aebef820f800867176eb670f562eff.jpg",
                "631_png.rf.67aebef820f800867176eb670f562eff.jpeg",
                "631_png.rf.67aebef820f800867176eb670f562eff.png",
                "631_png.rf.67aebef820f800867176eb670f562eff.bmp"
            ]
        },
        "vehicles": {
            "original": {
                "annotation": "0 0.6274038461538461 0.5072115384615384 0.3112980769230769 0.4026442307692308\n0 0.3605769230769231 0.42427884615384615 0.23798076923076922 0.30288461538461536\n0 0.7980769230769231 0.36538461538461536 0.10576923076923077 0.15384615384615385\n0 0.9194711538461539 0.359375 0.10817307692307693 0.140625\n0 0.9807692307692307 0.3161057692307692 0.03365384615384615 0.07451923076923077",
                "format": "txt",
                "source": "YoloDarknet"
            },
            "converted": "{\"key\":\"631_png.rf.67aebef820f800867176eb670f562eff.jpg\",\"boxes\":[{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":261,\"y\":211,\"width\":130,\"height\":168},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":150,\"y\":176.5,\"width\":99,\"height\":126},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":332,\"y\":152,\"width\":44,\"height\":64},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":382.5,\"y\":149.5,\"width\":45,\"height\":59},{\"label\":\"Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection\",\"x\":408,\"y\":131.5,\"width\":14,\"height\":31}],\"width\":416,\"height\":416}",
            "used": true,
            "key": [
                "631_png.rf.67aebef820f800867176eb670f562eff.jpg",
                "631_png.rf.67aebef820f800867176eb670f562eff.jpeg",
                "631_png.rf.67aebef820f800867176eb670f562eff.png",
                "631_png.rf.67aebef820f800867176eb670f562eff.bmp"
            ]
        }
    },
    "batches": [],
    "camera": null,
    "classes": [
        "vehicle",
        "vehicle-FxUj",
        "vehicles"
    ],
    "created": {
        "_seconds": 1701497705,
        "_nanoseconds": 159000000
    },
    "datasets": [
        "DfU9yY9p0O7KQjSZe4SK",
        "9i0kmI3wgWSdPwByrbm6"
    ],
    "extension": "jpg",
    "hashes": [
        "c22c3fe4920c7409ecf480ca964d4b76"
    ],
    "height": 416,
    "id": "2sWNW01o58bwV0IWrgxW",
    "label": [
        "Unlabeled"
    ],
    "metadata": {
        "no": "metadata"
    },
    "name": "631_png.jpg",
    "owner": "26D5fqP0Y2Sv8oseGD5mV8IfSvy2",
    "projects": [
        "DfU9yY9p0O7KQjSZe4SK",
        "9i0kmI3wgWSdPwByrbm6"
    ],
    "r": 0.9895356442119032,
    "split": "test",
    "split.494d4BkxdnMx3oahIA6u": "test",
    "split.9i0kmI3wgWSdPwByrbm6": "test",
    "split.DfU9yY9p0O7KQjSZe4SK": "test",
    "tags": [
        "494d4BkxdnMx3oahIA6u:status:approved",
        "DfU9yY9p0O7KQjSZe4SK:status:approved",
        "9i0kmI3wgWSdPwByrbm6:status:approved"
    ],
    "updated": {
        "_seconds": 1706676559,
        "_nanoseconds": 967000000
    },
    "updatedDate": "Jan 31, 2024",
    "updatedTime": "4:49AM",
    "updatedTimezone": "+00:00",
    "uploader": "26D5fqP0Y2Sv8oseGD5mV8IfSvy2",
    "width": 416
}
                            
                            

Annotation Data

{
    "boxes": [
        {
            "label": "Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection",
            "x": 261,
            "y": 211,
            "width": 130,
            "height": 168
        },
        {
            "label": "Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection",
            "x": 150,
            "y": 176.5,
            "width": 99,
            "height": 126
        },
        {
            "label": "Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection",
            "x": 332,
            "y": 152,
            "width": 44,
            "height": 64
        },
        {
            "label": "Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection",
            "x": 382.5,
            "y": 149.5,
            "width": 45,
            "height": 59
        },
        {
            "label": "Vehicle Detection YOLO V5 - v1 YOLO v5 vehicle detection",
            "x": 408,
            "y": 131.5,
            "width": 14,
            "height": 31
        }
    ],
    "height": 416,
    "key": "631_png.rf.67aebef820f800867176eb670f562eff.jpg",
    "width": 416
}
                                

                                

Annotation Editor

Delete
Save (Enter)

Smart Polygon

Click inside to remove area or outside to expand.
Undo
Redo
Simplify
Simple Complex
Delete
Finish (Enter)
270%
Reset