Dataset Versions
Versions
2023-09-11 2:26pm
v31
· a year ago
2023-09-11 2:06pm
v30
· a year ago
2023-09-11 2:06pm
v29
· a year ago
2023-09-11 1:57pm
v28
· a year ago
2023-09-11 1:57pm
v27
· a year ago
2023-09-11 1:57pm
v26
· a year ago
2023-09-11 1:57pm
v25
· a year ago
2023-06-16 1:42am
v22
· 2 years ago
2023-06-16 1:42am
v21
· 2 years ago
2023-06-16 1:41am
v20
· 2 years ago
2023-06-16 1:37am
v18
· 2 years ago
2023-06-16 1:37am
v17
· 2 years ago
2023-06-16 1:37am
v16
· 2 years ago
2023-06-16 1:37am
v15
· 2 years ago
2023-06-16 1:37am
v14
· 2 years ago
2023-06-13 9:31pm
v10
· 2 years ago
2023-06-13 9:22pm
v9
· 2 years ago
2023-06-13 9:22pm
v8
· 2 years ago
2023-06-13 9:22pm
v7
· 2 years ago
2023-06-13 9:22pm
v6
· 2 years ago
2023-06-13 9:18pm
v5
· 2 years ago
2023-06-13 9:15pm
v4
· 2 years ago
2023-06-13 9:15pm
v3
· 2 years ago
2023-06-13 9:14pm
v2
· 2 years ago
2023-06-13 9:14pm
v1
· 2 years ago
v31
2023-09-11 2:26pm
Generated on Sep 11, 2023
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
5178 Total Images
View All ImagesDataset Split
Train Set 100%
5178Images
Valid Set %
0Images
Test Set %
0Images
Preprocessing
Auto-Adjust Contrast: Using Contrast Stretching
Augmentations
Outputs per training example: 3
Brightness: Between -8% and +8%