Dataset Versions

v27

yolov11m-640

Generated on Oct 1, 2024

Popular Download Formats

Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.

Dataset Split

Train Set 65%
136Images
Valid Set 26%
55Images
Test Set 9%
19Images

Preprocessing

Auto-Orient: Applied
Resize: Fit (grey edges) in 640x640
Filter by Tag: 1 required, 0 dropped

Augmentations

No augmentations were applied.

Similar Projects

See More
COCO Dataset
Annotate
Show/hide annotations(H)
train
Labels
Attributes
Raw Data

Annotations

Group:
object

CLASSES

LAYERS

 
train
1

Unused Classes

airplane
apple
backpack
banana
baseball bat
baseball glove
bear
bed
bench
bicycle
bird
boat
book
bottle
bowl
broccoli
bus
cake
car
carrot
cat
cell phone
chair
clock
couch
cow
cup
dining table
dog
donut
elephant
fire hydrant
fork
frisbee
giraffe
hair drier
handbag
horse
hot dog
keyboard
kite
knife
laptop
microwave
motorcycle
mouse
orange
oven
parking meter
person
pizza
potted plant
refrigerator
remote
sandwich
scissors
sheep
sink
skateboard
skis
snowboard
spoon
sports ball
stop sign
suitcase
surfboard
teddy bear
tennis racket
tie
toaster
toilet
toothbrush
traffic light
truck
tv
umbrella
vase
wine glass
zebra

Tags

  • eval-images

Attributes

000000012626.jpg

640x640
0.41MP

Updated Oct 1, 2024

9:07PM
GMT+00:00

Generated by Roboflow

Training Set

Transforms

Auto-Orient Applied
Resize Fit (black edges) in 640x640

Annotation History

Loading...

Raw Data

{
    "camera": "Generated by Roboflow",
    "classes": {
        "bed": 4355,
        "potted plant": 8995,
        "bus": 6354,
        "tv": 6093,
        "bicycle": 7427,
        "couch": 6040,
        "toothbrush": 2009,
        "cow": 8526,
        "vase": 6890,
        "laptop": 5201,
        "remote": 5985,
        "frisbee": 2797,
        "hot dog": 3045,
        "motorcycle": 9095,
        "mouse": 2368,
        "tie": 6750,
        "cake": 6663,
        "bird": 11246,
        "donut": 7517,
        "spoon": 6417,
        "fire hydrant": 1966,
        "bear": 1365,
        "train": 4761,
        "banana": 9837,
        "suitcase": 6495,
        "bench": 10251,
        "baseball bat": 3421,
        "sink": 5835,
        "stop sign": 2058,
        "clock": 6601,
        "baseball glove": 3895,
        "horse": 6860,
        "knife": 8093,
        "toilet": 4336,
        "giraffe": 5363,
        "person": 273390,
        "skis": 6886,
        "dog": 5726,
        "elephant": 5768,
        "hair drier": 209,
        "refrigerator": 2763,
        "cup": 21547,
        "snowboard": 2750,
        "skateboard": 5721,
        "surfboard": 6395,
        "book": 25876,
        "dining table": 16408,
        "truck": 10388,
        "broccoli": 7624,
        "parking meter": 1345,
        "bottle": 25367,
        "bowl": 14979,
        "cell phone": 6694,
        "apple": 6090,
        "sports ball": 6602,
        "pizza": 6106,
        "car": 45798,
        "cat": 4970,
        "toaster": 234,
        "microwave": 1728,
        "sheep": 9870,
        "zebra": 5571,
        "keyboard": 3008,
        "wine glass": 8256,
        "oven": 3476,
        "umbrella": 11844,
        "chair": 40272,
        "sandwich": 4550,
        "boat": 11189,
        "orange": 6686,
        "scissors": 1517,
        "fork": 5694,
        "handbag": 12891,
        "airplane": 5278,
        "backpack": 9090,
        "teddy bear": 4984,
        "kite": 9412,
        "tennis racket": 5037,
        "carrot": 8223,
        "traffic light": 13521
    },
    "datasets": [
        "43OxjDl449AxuKXDjkMP"
    ],
    "destination": "b31daeb5bcbc829014b2d6d02febf986",
    "height": 640,
    "id": "uteXhtqTrmhrJ2ART0jw",
    "label": [],
    "labels": [],
    "name": "000000012626.jpg",
    "numSteps": 2,
    "owner": "BTRTpB7nxxjUchrOQ9vT",
    "preprocessing": [
        "auto-orient",
        "resize:[\"Fit (black edges) in\",640,640]"
    ],
    "preprocessingParsed": [
        {
            "name": "Auto-Orient",
            "value": "Applied"
        },
        {
            "name": "Resize",
            "value": "Fit (black edges) in 640x640"
        }
    ],
    "source": "uteXhtqTrmhrJ2ART0jw",
    "split": "train",
    "split.43OxjDl449AxuKXDjkMP.14": "train",
    "split.43OxjDl449AxuKXDjkMP.15": "train",
    "split.43OxjDl449AxuKXDjkMP.16": "train",
    "split.43OxjDl449AxuKXDjkMP.17": "train",
    "split.43OxjDl449AxuKXDjkMP.18": "train",
    "split.43OxjDl449AxuKXDjkMP.19": "train",
    "split.43OxjDl449AxuKXDjkMP.20": "train",
    "split.43OxjDl449AxuKXDjkMP.21": "train",
    "split.43OxjDl449AxuKXDjkMP.22": "train",
    "split.43OxjDl449AxuKXDjkMP.23": "train",
    "split.43OxjDl449AxuKXDjkMP.24": "train",
    "split.43OxjDl449AxuKXDjkMP.25": "train",
    "split.43OxjDl449AxuKXDjkMP.26": "train",
    "split.43OxjDl449AxuKXDjkMP.27": "train",
    "split.43OxjDl449AxuKXDjkMP.28": "train",
    "split.43OxjDl449AxuKXDjkMP.29": "train",
    "split.43OxjDl449AxuKXDjkMP.30": "train",
    "split.43OxjDl449AxuKXDjkMP.31": "train",
    "split.43OxjDl449AxuKXDjkMP.32": "train",
    "split.43OxjDl449AxuKXDjkMP.33": "train",
    "split.43OxjDl449AxuKXDjkMP.34": "train",
    "status": "generated",
    "transforms": "[\n    \"auto-orient\",\n    \"resize:[\\\"Fit (black edges) in\\\",640,640]\"\n]",
    "updated": {
        "_seconds": 1727816875,
        "_nanoseconds": 282000000
    },
    "updatedDate": "Oct 1, 2024",
    "updatedTime": "9:07PM",
    "updatedTimezone": "+00:00",
    "user_tags": [
        "eval-images"
    ],
    "versions": [
        "43OxjDl449AxuKXDjkMP/14",
        "43OxjDl449AxuKXDjkMP/15",
        "43OxjDl449AxuKXDjkMP/16",
        "43OxjDl449AxuKXDjkMP/17",
        "43OxjDl449AxuKXDjkMP/18",
        "43OxjDl449AxuKXDjkMP/19",
        "43OxjDl449AxuKXDjkMP/20",
        "43OxjDl449AxuKXDjkMP/21",
        "43OxjDl449AxuKXDjkMP/23",
        "43OxjDl449AxuKXDjkMP/22",
        "43OxjDl449AxuKXDjkMP/24",
        "43OxjDl449AxuKXDjkMP/25",
        "43OxjDl449AxuKXDjkMP/26",
        "43OxjDl449AxuKXDjkMP/27",
        "43OxjDl449AxuKXDjkMP/28",
        "43OxjDl449AxuKXDjkMP/29",
        "43OxjDl449AxuKXDjkMP/30",
        "43OxjDl449AxuKXDjkMP/31",
        "43OxjDl449AxuKXDjkMP/33",
        "43OxjDl449AxuKXDjkMP/34",
        "43OxjDl449AxuKXDjkMP/32"
    ],
    "width": 640
}
{
    "boxes": [
        {
            "type": "polygon",
            "label": "train",
            "x": 257.595,
            "y": 456.53499999999997,
            "width": 229.63000000000002,
            "height": 26.189999999999998,
            "points": [
                [
                    212.63,
                    467.01
                ],
                [
                    372.41,
                    469.63
                ],
                [
                    371.54,
                    467.01
                ],
                [
                    369.79,
                    454.79
                ],
                [
                    292.08,
                    454.79
                ],
                [
                    254.54,
                    447.8
                ],
                [
                    160.24,
                    443.44
                ],
                [
                    142.78,
                    443.44
                ],
                [
                    142.78,
                    465.27
                ],
                [
                    212.63,
                    467.01
                ]
            ]
        }
    ],
    "height": 640,
    "key": "000000012626.jpg",
    "width": 640
}

Annotation Editor

Delete
Save (Enter)

Smart Polygon

Click inside to remove area or outside to expand.
Undo
Redo
Simplify
Simple Complex
Delete
Finish (Enter)
170%
Reset