The training set is empty.
The validation set is empty.
The testing set is empty.
CLASSES
LAYERS
{ "accumulator": null, "annotation_jobs": [ "6XuavOh2ocYWAOuadLhe/LS72f57GorbiDr96QdHw", "K4nPjFtFil5sDTjLxr9w/4nfzDKvoIgRJvvkaMhD6", "uQPruf6LU6IeOSeRBX9V/uS68v0qKPrdgtcC2P43f" ], "annotations": { "instances": { "original": { "annotation": "<annotation>\n\t<folder>_rgb</folder>\n\t<filename>Town01_004380.png</filename>\n\t<path>/home/daniel/CARLA_0.9.5/PythonAPI/examples/Dataset/Town01_40_vehicles/_rgb/004380.png</path>\n\t<source>\n\t\t<database>Unknown</database>\n\t</source>\n\t<size>\n\t\t<width>640</width>\n\t\t<height>380</height>\n\t\t<depth>3</depth>\n\t</size>\n\t<segmented>0</segmented>\n\t<object>\n\t\t<name>vehicle</name>\n\t\t<pose>Unspecified</pose>\n\t\t<truncated>0</truncated>\n\t\t<difficult>0</difficult>\n\t\t<bndbox>\n\t\t\t<xmin>351</xmin>\n\t\t\t<ymin>198</ymin>\n\t\t\t<xmax>450</xmax>\n\t\t\t<ymax>269</ymax>\n\t\t</bndbox>\n\t</object>\n\t<object>\n\t\t<name>traffic_sign</name>\n\t\t<pose>Unspecified</pose>\n\t\t<truncated>0</truncated>\n\t\t<difficult>0</difficult>\n\t\t<bndbox>\n\t\t\t<xmin>407</xmin>\n\t\t\t<ymin>184</ymin>\n\t\t\t<xmax>418</xmax>\n\t\t\t<ymax>195</ymax>\n\t\t</bndbox>\n\t</object>\n</annotation>", "format": "xml", "source": "RectLabel" }, "converted": "{\"key\":\"Town01_004380.png\",\"width\":640,\"height\":380,\"boxes\":[{\"label\":\"vehicle\",\"x\":399.5,\"y\":232.5,\"width\":99,\"height\":71},{\"label\":\"traffic_sign\",\"x\":411.5,\"y\":188.5,\"width\":11,\"height\":11}]}", "used": true, "key": [ "Town01_004380.png", "Town01_004380.jpg", "Town01_004380.jpeg", "Town01_004380.png", "Town01_004380.bmp" ] }, "cars": { "original": { "annotation": "<annotation>\n <filename>Town01_004380.png</filename>\n <folder>_rgb</folder>\n <object>\n <bndbox>\n <xmax>450</xmax>\n <xmin>351</xmin>\n <ymax>269</ymax>\n <ymin>198</ymin>\n </bndbox>\n <difficult>0</difficult>\n <name>car</name>\n <pose>Unspecified</pose>\n <truncated>0</truncated>\n </object>\n <object>\n <bndbox>\n <xmax>418</xmax>\n <xmin>407</xmin>\n <ymax>195</ymax>\n <ymin>184</ymin>\n </bndbox>\n <difficult>0</difficult>\n <name>traffic sign</name>\n <pose>Unspecified</pose>\n <truncated>0</truncated>\n </object>\n <path>/home/daniel/CARLA_0.9.5/PythonAPI/examples/Dataset/Town01_40_vehicles/_rgb/004380.png</path>\n <segmented>0</segmented>\n <size>\n <depth>3</depth>\n <height>380</height>\n <width>640</width>\n </size>\n <source>\n <database>Unknown</database>\n </source>\n</annotation>", "format": "xml", "source": "RectLabel" }, "converted": "{\"key\":\"Town01_004380.png\",\"width\":640,\"height\":380,\"boxes\":[{\"label\":\"car\",\"x\":399.5,\"y\":232.5,\"width\":99,\"height\":71},{\"label\":\"traffic sign\",\"x\":411.5,\"y\":188.5,\"width\":11,\"height\":11}]}", "used": true, "key": [ "Town01_004380.png", "Town01_004380.jpg", "Town01_004380.jpeg", "Town01_004380.png", "Town01_004380.bmp" ] }, "car": { "original": { "annotation": "<annotation>\n <filename>Town01_004380.png</filename>\n <folder>_rgb</folder>\n <object>\n <bndbox>\n <xmax>450</xmax>\n <xmin>351</xmin>\n <ymax>269</ymax>\n <ymin>198</ymin>\n </bndbox>\n <difficult>0</difficult>\n <name>car</name>\n <pose>Unspecified</pose>\n <truncated>0</truncated>\n </object>\n <object>\n <bndbox>\n <xmax>418</xmax>\n <xmin>407</xmin>\n <ymax>195</ymax>\n <ymin>184</ymin>\n </bndbox>\n <difficult>0</difficult>\n <name>traffic sign</name>\n <pose>Unspecified</pose>\n <truncated>0</truncated>\n </object>\n <path>/home/daniel/CARLA_0.9.5/PythonAPI/examples/Dataset/Town01_40_vehicles/_rgb/004380.png</path>\n <segmented>0</segmented>\n <size>\n <depth>3</depth>\n <height>380</height>\n <width>640</width>\n </size>\n <source>\n <database>Unknown</database>\n </source>\n</annotation>", "format": "xml", "source": "RectLabel" }, "converted": "{\"key\":\"Town01_004380.png\",\"width\":640,\"height\":380,\"boxes\":[{\"label\":\"car\",\"x\":399.5,\"y\":232.5,\"width\":99,\"height\":71},{\"label\":\"traffic sign\",\"x\":411.5,\"y\":188.5,\"width\":11,\"height\":11}]}", "used": true, "key": [ "Town01_004380.png", "Town01_004380.jpg", "Town01_004380.jpeg", "Town01_004380.png", "Town01_004380.bmp" ] } }, "camera": null, "classes": [ "instances", "cars", "car" ], "created": { "_seconds": 1654293909, "_nanoseconds": 758000000 }, "datasets": [ "6XuavOh2ocYWAOuadLhe", "K4nPjFtFil5sDTjLxr9w", "uQPruf6LU6IeOSeRBX9V" ], "extension": "png", "hashes": [ "0fdd5a8759b4a89968bf147cd4749d7d" ], "height": 380, "id": "lo88TpxPhAPgyxdz5Sn1", "label": [ "Unlabeled" ], "metadata": { "no": "metadata" }, "name": "Town01_004380.png", "owner": "3F1uMn9CWxRwcvjBuVrT014GkTt1", "projects": [ "6XuavOh2ocYWAOuadLhe", "K4nPjFtFil5sDTjLxr9w", "uQPruf6LU6IeOSeRBX9V" ], "r": 0.9992316557817903, "split": "train", "split.6XuavOh2ocYWAOuadLhe": "train", "split.K4nPjFtFil5sDTjLxr9w": "train", "split.uQPruf6LU6IeOSeRBX9V": "train", "tags": [ "6XuavOh2ocYWAOuadLhe:status:approved", "K4nPjFtFil5sDTjLxr9w:status:approved", "uQPruf6LU6IeOSeRBX9V:status:approved" ], "updated": { "_seconds": 1654304393, "_nanoseconds": 390000000 }, "updatedDate": "Jun 4, 2022", "updatedTime": "12:59AM", "updatedTimezone": "+00:00", "uploader": "3F1uMn9CWxRwcvjBuVrT014GkTt1", "width": 640 }
{ "boxes": [ { "label": "vehicle", "x": 399.5, "y": 232.5, "width": 99, "height": 71 }, { "label": "traffic_sign", "x": 411.5, "y": 188.5, "width": 11, "height": 11 } ], "height": 380, "key": "Town01_004380.png", "width": 640 }
Annotation Editor
Smart Polygon