Dataset Versions
Versions
2023-08-18 4:13pm
v15
· a year ago
2023-08-18 4:13pm
v14
· a year ago
2023-08-18 1:51pm
v13
· a year ago
2023-08-17 1:36pm
v12
· a year ago
2023-08-16 12:16pm
v11
· a year ago
2023-08-16 11:32am
v10
· a year ago
2023-08-16 11:32am
v9
· a year ago
2023-08-16 11:32am
v8
· a year ago
2023-08-16 11:32am
v7
· a year ago
2023-08-16 11:32am
v6
· a year ago
2023-08-16 11:32am
v5
· a year ago
2023-08-16 11:32am
v4
· a year ago
2023-08-16 11:32am
v3
· a year ago
2023-08-16 11:32am
v2
· a year ago
2023-08-16 11:31am
v1
· a year ago
v15
2023-08-18 4:13pm
Generated on Aug 18, 2023
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
2567 Total Images
View All ImagesDataset Split
Train Set 88%
2250Images
Valid Set 8%
213Images
Test Set 4%
104Images
Preprocessing
Auto-Orient: Applied
Resize: Fit (black edges) in 224x224
Augmentations
Outputs per training example: 3
Flip: Horizontal, Vertical
90° Rotate: Clockwise, Counter-Clockwise
Rotation: Between -44° and +44°
Shear: ±29° Horizontal, ±17° Vertical
Hue: Between -76° and +76°
Saturation: Between -56% and +56%
Brightness: Between -39% and +39%
Exposure: Between -3% and +3%
Blur: Up to 0.75px
Noise: Up to 1% of pixels
Cutout: 3 boxes with 9% size each