Dataset Versions
Versions
2024-11-30 7:08pm
v39
· a month ago
2024-10-24 11:33pm
v38
· 3 months ago
2024-10-24 11:18pm
v37
· 3 months ago
2024-10-24 4:18pm
v36
· 3 months ago
2024-10-24 2:44am
v35
· 3 months ago
2024-10-24 2:35am
v34
· 3 months ago
2024-10-24 1:50am
v33
· 3 months ago
2024-10-24 1:36am
v32
· 3 months ago
2024-10-24 1:16am
v31
· 3 months ago
2024-10-24 12:53am
v30
· 3 months ago
2024-10-24 12:50am
v29
· 3 months ago
2024-10-23 9:09pm
v28
· 3 months ago
2024-10-23 8:44pm
v27
· 3 months ago
2024-10-23 4:42pm
v26
· 3 months ago
2024-10-23 1:17pm
v25
· 3 months ago
2024-10-22 3:49pm
v23
· 3 months ago
2024-10-22 3:16pm
v22
· 3 months ago
2024-10-20 12:08am
v21
· 3 months ago
2024-10-19 10:11pm
v10
· 3 months ago
2024-10-19 8:31pm
v9
· 3 months ago
2024-10-19 3:00pm
v8
· 3 months ago
2024-10-15 3:02am
v7
· 3 months ago
2024-10-14 6:59pm
v6
· 3 months ago
2024-10-14 6:49pm
v5
· 3 months ago
2024-10-14 12:38am
v4
· 3 months ago
2024-10-14 12:36am
v3
· 3 months ago
2024-10-14 12:31am
v2
· 3 months ago
Bad_Example
v1
· 3 months ago
v32
2024-10-24 1:36am
Generated on Oct 24, 2024
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
120 Total Images
View All ImagesDataset Split
Train Set 90%
108Images
Valid Set 10%
12Images
Test Set %
0Images
Preprocessing
Auto-Orient: Applied
Resize: Fit within 1216x240
Auto-Adjust Contrast: Using Contrast Stretching
Modify Classes: 2 remapped, 3 dropped
Augmentations
Outputs per training example: 3
Flip: Horizontal, Vertical
Shear: ±10° Horizontal, ±10° Vertical
Saturation: Between -10% and +10%
Brightness: Between -10% and +10%