Dataset Versions

Versions
2022-09-24 2:50pm
v45
·
2 years ago
2022-09-24 2:49pm
v44
·
2 years ago
2022-09-24 2:48pm
v43
·
2 years ago
2022-09-24 2:46pm
v42
·
2 years ago
2022-09-24 2:46pm
v41
·
2 years ago
2022-09-24 2:45pm
v40
·
2 years ago
2022-09-24 2:43pm
v39
·
2 years ago
2022-09-24 2:42pm
v38
·
2 years ago
2022-09-24 2:42pm
v37
·
2 years ago
2022-09-24 2:41pm
v36
·
2 years ago
2022-09-24 2:40pm
v35
·
2 years ago
2022-09-24 2:37pm
v34
·
2 years ago
2022-09-24 2:36pm
v33
·
2 years ago
2022-09-24 12:28pm
v32
·
2 years ago
2022-09-24 12:27pm
v31
·
2 years ago
2022-09-24 11:52am
v30
·
2 years ago
2022-09-24 11:51am
v29
·
2 years ago
2022-09-24 11:51am
v28
·
2 years ago
2022-09-24 11:50am
v27
·
2 years ago
2022-09-24 11:49am
v26
·
2 years ago
2022-09-24 11:49am
v25
·
2 years ago
2022-09-24 11:48am
v24
·
2 years ago
2022-09-24 11:47am
v23
·
2 years ago
2022-09-24 11:46am
v22
·
2 years ago
2022-09-24 11:45am
v21
·
2 years ago
2022-09-24 11:44am
v20
·
2 years ago
2022-09-24 11:43am
v19
·
2 years ago
2022-09-24 11:42am
v18
·
2 years ago
2022-09-24 11:41am
v17
·
2 years ago
2022-09-24 11:41am
v16
·
2 years ago
2022-09-20 8:03pm
v15
·
2 years ago
2022-09-20 8:03pm
v14
·
2 years ago
2022-09-20 8:02pm
v13
·
2 years ago
2022-09-20 8:01pm
v12
·
2 years ago
2022-09-20 8:01pm
v11
·
2 years ago
2022-09-20 8:00pm
v10
·
2 years ago
2022-09-20 8:00pm
v9
·
2 years ago
2022-09-20 7:59pm
v8
·
2 years ago
2022-09-20 7:58pm
v7
·
2 years ago
2022-09-20 5:04pm
v6
·
2 years ago
2022-09-20 5:04pm
v5
·
2 years ago
2022-09-20 5:03pm
v4
·
2 years ago
2022-09-20 5:02pm
v3
·
2 years ago
2022-09-20 4:49pm
v2
·
2 years ago
2022-09-20 4:49pm
v1
·
2 years ago
v23

2022-09-24 11:47am

Generated on Sep 24, 2022

Popular Download Formats

Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.

Dataset Split

Train Set 100%
30Images
Valid Set %
0Images
Test Set %
0Images

Preprocessing

Auto-Orient: Applied
Resize: Stretch to 640x640

Augmentations

Outputs per training example: 3
Flip: Horizontal, Vertical
90° Rotate: Clockwise, Counter-Clockwise, Upside Down
Rotation: Between -15° and +15°
Shear: ±15° Horizontal, ±15° Vertical
Grayscale: Apply to 25% of images
Saturation: Between -25% and +25%
Brightness: Between -25% and +25%
Exposure: Between -25% and +25%
Noise: Up to 3% of pixels