Dataset Versions
Versions
v3.1-Roatation-Hue-GrayS-LargeSet
v25
· 2 months ago
v3.1-Roatation-Hue-GrayS
v24
· 2 months ago
v3-Roatation-Hue-GrayS-WithV2Checkpoint
v23
· 2 months ago
v3-Roatation-Hue-GrayS
v21
· 2 months ago
V2.5-Hue-GrayS
v20
· 2 months ago
V2.5-Rotation-GrayS
v19
· 2 months ago
V2.5-Rotation-Hue
v18
· 2 months ago
V2.5-Rotation-Hue-GrayS
v17
· 2 months ago
V2-Saturation40-NoCheckpoint
v16
· 2 months ago
v2-Hue25-NoCheckpoint
v15
· 2 months ago
v2-Cutout-3Boxes20-NoCheckpoint
v14
· 2 months ago
V2-Shear-H5V15-NoCheckpoint
v13
· 2 months ago
v2-Grayscale20-NoCheckpoint
v12
· 2 months ago
V2-Flip-HV-NoCheckpoint
v11
· 2 months ago
V2-90Rotations-NoCheckPoint
v9
· 2 months ago
V2-Saturation40
v8
· 2 months ago
v2-Hue25
v7
· 2 months ago
v2-Grayscale20
v6
· 2 months ago
v2-Cutout-3Boxes20
v5
· 2 months ago
V2-Shear-H5V15
v4
· 2 months ago
V2-90Rotations
v3
· 2 months ago
V2-Flip-HV
v2
· 2 months ago
Anoles of Florida Identifier v1
v1
· 3 months ago
v3
V2-90Rotations
Generated on Nov 12, 2024
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
664 Total Images
View All ImagesDataset Split
Train Set 86%
574Images
Valid Set 9%
63Images
Test Set 4%
27Images
Preprocessing
No preprocessing steps were applied.
Augmentations
Outputs per training example: 3
90° Rotate: Clockwise, Counter-Clockwise, Upside Down