Dataset Versions
Versions
raw-images_updated
v16
· 2 years ago
v4-augmented5x-Added-iOSImages_resized640
v15
· 2 years ago
v3-augmented5x-Added-iOSImages_resized416
v14
· 2 years ago
v3-augmented5x-Added-iOSImages_resized640
v13
· 2 years ago
v2-augmented5x-Added-iOSImages_resized640
v12
· 2 years ago
augmented5x-Added-iOSImages_resized640
v11
· 2 years ago
augmented5x-Added-iOSImages_resized416
v10
· 2 years ago
Added-iOSImages_resized640
v8
· 2 years ago
Added-iOSImages_resized416
v7
· 2 years ago
Added-iOSImages_raw-images
v6
· 2 years ago
augmented5x-resized640-rawImages_MaskWearingClassic
v5
· 2 years ago
augmented5x-resized416-rawImages_MaskWearingClassic
v4
· 2 years ago
resized640-rawImages_MaskWearingClassic
v3
· 2 years ago
resized416-rawImages_MaskWearingClassic
v2
· 2 years ago
original-rawImages_MaskWearingClassic
v1
· 2 years ago
v4
augmented5x-resized416-rawImages_MaskWearingClassic
Generated on Nov 4, 2022
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
7398 Total Images
View All ImagesDataset Split
Train Set 92%
6830Images
Valid Set 5%
368Images
Test Set 3%
200Images
Preprocessing
Auto-Orient: Applied
Resize: Stretch to 416x416
Augmentations
Outputs per training example: 5
Flip: Horizontal
Crop: 0% Minimum Zoom, 30% Maximum Zoom
Rotation: Between -10° and +10°
Shear: ±3° Horizontal, ±3° Vertical
Grayscale: Apply to 10% of images
Hue: Between -25° and +25°
Saturation: Between -25% and +25%
Brightness: Between -25% and +25%
Exposure: Between -25% and +25%
Blur: Up to 1px
Cutout: 5 boxes with 3% size each