Dataset Versions
Versions
AUG_GAN_Rotate_Sat
v36
· 2 years ago
AUG_by_Gan_Only
v35
· 2 years ago
MS-AUG-SHEAR-BBOX-SHEAR
v34
· 3 years ago
MS-AUG-BBOX-EXP-25-25
v33
· 3 years ago
MS-AUG-BBOX-CROP-0-20
v32
· 3 years ago
MS-AUG-CUTOUT-4-15
v31
· 3 years ago
MS-AUG-BRIGHTNESS-25-25
v30
· 3 years ago
MS-AUG-SHEAR-15-15
v29
· 3 years ago
MS-AUG-FLIP-HOR-VER
v28
· 3 years ago
MS-AUG-FLIP-VER
v27
· 3 years ago
MS-AUG-FLIP-HOR
v26
· 3 years ago
MS-PR-AUTO-AD-CON
v25
· 3 years ago
MS-PR-ISOL-OB
v24
· 3 years ago
AP-PR-AUG-GRAY-NOISE
v22
· 3 years ago
AP-AUG-NOISE
v21
· 3 years ago
MK-AUG-FLIP
v20
· 3 years ago
MK-AUG-BLUR-0-1
v19
· 3 years ago
MK-AUG-HUE-0-60
v18
· 3 years ago
MK-ROT-SAT-15
v17
· 3 years ago
MK-AUG-CROP-0-20
v16
· 3 years ago
BASIC
v15
· 3 years ago
AP-AUG-BBOX-BRI-25
v14
· 3 years ago
AP-AUG-BBOX-ROT
v13
· 3 years ago
AP-AUG-BBOX-NOISE
v12
· 3 years ago
AP-AUG-SAT-15
v11
· 3 years ago
AP-AUG-ROT-15
v10
· 3 years ago
AP-PR-GRAYSCALE
v9
· 3 years ago
AP-PR-AUTO-ORIENT
v8
· 3 years ago
augmentation-test-3
v7
· 3 years ago
augmentation-test-2
v6
· 3 years ago
augmentation-test-1
v5
· 3 years ago
v17
MK-ROT-SAT-15
Generated on May 20, 2022
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
311 Total Images
View All ImagesDataset Split
Train Set 77%
239Images
Valid Set 13%
40Images
Test Set 10%
32Images
Preprocessing
Resize: Stretch to 256x256
Augmentations
Outputs per training example: 3
90° Rotate: Clockwise, Counter-Clockwise, Upside Down
Saturation: Between -20% and +20%