How to Use the yyee Detection API
Use this pre-trained yyee computer vision model to retrieve predictions with our hosted API or deploy to the edge. Learn More About Roboflow Inference
Switch Model:
mAP is equal to the average of the Average Precision metric across all classes in a model. Learn more
mAP
Samples from Test Set
Try this model on images
0
fps 0
objects detected ![](/images/inference-icon.png)
Roboflow Inference
Inference is Roboflow's open source deployment package for developer-friendly vision inference.
How to Deploy the yyee Detection API
Using Roboflow, you can deploy your object detection model to a range of environments, including:
- Raspberry Pi
- NVIDIA Jetson
- A Docker container
- A web page
- A Python script using the Roboflow SDK.
Below, we have instructions on how to use our deployment options.
Code Snippets
Python
JavaScript
## Infer on Local and Hosted Images To install dependencies, `pip install inference-sdk`. Then, add the following code snippet to a Python script: ```python from inference_sdk import InferenceHTTPClient CLIENT = InferenceHTTPClient( api_url="https://outline.roboflow.com", api_key="API_KEY" ) result = CLIENT.infer(your_image.jpg, model_id="MODEL_ENDPOINT/VERSION") ``` [See the inference-sdk docs](https://inference.roboflow.com/inference_helpers/inference_sdk/)
## Node.js We're using [axios](https://github.com/axios/axios) to perform the POST request in this example so first run npm install axios to install the dependency. ### Inferring on a Local Image ```javascript const axios = require("axios"); const fs = require("fs"); const image = fs.readFileSync("YOUR_IMAGE.jpg", { encoding: "base64" }); axios({ method: "POST", url: "https://outline.roboflow.com/MODEL_ENDPOINT/VERSION", params: { api_key: "API_KEY" }, data: image, headers: { "Content-Type": "application/x-www-form-urlencoded" } }) .then(function (response) { console.log(response.data); }) .catch(function (error) { console.log(error.message); }); ``` ### Inferring on an Image Hosted Elsewhere via URL ```javascript const axios = require("axios"); axios({ method: "POST", url: "https://outline.roboflow.com/MODEL_ENDPOINT/VERSION", params: { api_key: "API_KEY", image: "IMAGE_URL" } }) .then(function (response) { console.log(response.data); }) .catch(function (error) { console.log(error.message); }); ```
More Deployment Resources
Roboflow Inference Documentation
Look through our Inference documentation for more information and resources on how to utilize this model.
Example Web App
Use this model with a full fledged web application that has all sample code included.
Deploy to NVIDIA Jetson
Perform inference at the edge with a Jetson via our Docker container.
Deploy Mobile iOS
Utilize your model on your mobile device.
Similar Projects
See More![](https://source.roboflow.com/8HOXFja51QVrPEX5vGDRDB7ucur2/ynLIVs67qGxyvHgdn6hE/thumb.jpg)
![](https://source.roboflow.com/8HOXFja51QVrPEX5vGDRDB7ucur2/ynLIVs67qGxyvHgdn6hE/annotation-ye.png)
9732 images1 model
![](https://source.roboflow.com/8tXfckLflhOxfUqFV4E64m9bncP2/pC1W3wRs7C02qGtCtxiB/thumb.jpg)
![](https://source.roboflow.com/8tXfckLflhOxfUqFV4E64m9bncP2/pC1W3wRs7C02qGtCtxiB/annotation-coconuts.png)
3313 images
![](https://source.roboflow.com/VtnYAHrpxScaIa9MeL6BPuxHWbH2/9Bukurmp3mheQ5vuBa2a/thumb.jpg)
![](https://source.roboflow.com/VtnYAHrpxScaIa9MeL6BPuxHWbH2/9Bukurmp3mheQ5vuBa2a/annotation-Coconuts.png)
1189 images
![](https://source.roboflow.com/VtnYAHrpxScaIa9MeL6BPuxHWbH2/g5OraGR8a5ivxNZjwb5h/thumb.jpg)
![](https://source.roboflow.com/VtnYAHrpxScaIa9MeL6BPuxHWbH2/g5OraGR8a5ivxNZjwb5h/annotation-Niyog.png)
2223 images1 model
![](https://source.roboflow.com/9OHxJXjlAieooKkfbEONZ6OAuLo1/07uXQhJPRJVIB4NAY2vu/thumb.jpg)
![](https://source.roboflow.com/9OHxJXjlAieooKkfbEONZ6OAuLo1/07uXQhJPRJVIB4NAY2vu/annotation-copra.png)
895 images1 model