TRY THIS MODEL
Drop image here to test
character-detect-foundation-v2/2 (latest)
The training set is empty.
The validation set is empty.
The testing set is empty.
Classes
Layers
{ "accumulator": null, "annotation_jobs": [ "hc3xhO1DWTrQALf26PP5/HVIiSMhUdBWy8g5mCVhM" ], "annotations": { "numbers": { "original": { "annotation": "<annotation>\n\t<folder></folder>\n\t<filename>water008_79_jpg.rf.5d0608021af365e706a299a6bd3dfd0a.jpg</filename>\n\t<path>water008_79_jpg.rf.5d0608021af365e706a299a6bd3dfd0a.jpg</path>\n\t<source>\n\t\t<database>roboflow.ai</database>\n\t</source>\n\t<size>\n\t\t<width>640</width>\n\t\t<height>640</height>\n\t\t<depth>3</depth>\n\t</size>\n\t<segmented>0</segmented>\n\t<object>\n\t\t<name>9</name>\n\t\t<pose>Unspecified</pose>\n\t\t<truncated>0</truncated>\n\t\t<difficult>0</difficult>\n\t\t<occluded>0</occluded>\n\t\t<bndbox>\n\t\t\t<xmin>10</xmin>\n\t\t\t<xmax>67</xmax>\n\t\t\t<ymin>297</ymin>\n\t\t\t<ymax>381</ymax>\n\t\t</bndbox>\n\t</object>\n\t<object>\n\t\t<name>8</name>\n\t\t<pose>Unspecified</pose>\n\t\t<truncated>0</truncated>\n\t\t<difficult>0</difficult>\n\t\t<occluded>0</occluded>\n\t\t<bndbox>\n\t\t\t<xmin>93</xmin>\n\t\t\t<xmax>151</xmax>\n\t\t\t<ymin>291</ymin>\n\t\t\t<ymax>377</ymax>\n\t\t</bndbox>\n\t</object>\n\t<object>\n\t\t<name>7</name>\n\t\t<pose>Unspecified</pose>\n\t\t<truncated>0</truncated>\n\t\t<difficult>0</difficult>\n\t\t<occluded>0</occluded>\n\t\t<bndbox>\n\t\t\t<xmin>171</xmin>\n\t\t\t<xmax>228</xmax>\n\t\t\t<ymin>279</ymin>\n\t\t\t<ymax>369</ymax>\n\t\t</bndbox>\n\t</object>\n\t<object>\n\t\t<name>3</name>\n\t\t<pose>Unspecified</pose>\n\t\t<truncated>0</truncated>\n\t\t<difficult>0</difficult>\n\t\t<occluded>0</occluded>\n\t\t<bndbox>\n\t\t\t<xmin>254</xmin>\n\t\t\t<xmax>312</xmax>\n\t\t\t<ymin>278</ymin>\n\t\t\t<ymax>362</ymax>\n\t\t</bndbox>\n\t</object>\n\t<object>\n\t\t<name>3</name>\n\t\t<pose>Unspecified</pose>\n\t\t<truncated>0</truncated>\n\t\t<difficult>0</difficult>\n\t\t<occluded>0</occluded>\n\t\t<bndbox>\n\t\t\t<xmin>332</xmin>\n\t\t\t<xmax>390</xmax>\n\t\t\t<ymin>269</ymin>\n\t\t\t<ymax>357</ymax>\n\t\t</bndbox>\n\t</object>\n\t<object>\n\t\t<name>3</name>\n\t\t<pose>Unspecified</pose>\n\t\t<truncated>0</truncated>\n\t\t<difficult>0</difficult>\n\t\t<occluded>0</occluded>\n\t\t<bndbox>\n\t\t\t<xmin>413</xmin>\n\t\t\t<xmax>467</xmax>\n\t\t\t<ymin>264</ymin>\n\t\t\t<ymax>352</ymax>\n\t\t</bndbox>\n\t</object>\n\t<object>\n\t\t<name>2</name>\n\t\t<pose>Unspecified</pose>\n\t\t<truncated>0</truncated>\n\t\t<difficult>0</difficult>\n\t\t<occluded>0</occluded>\n\t\t<bndbox>\n\t\t\t<xmin>490</xmin>\n\t\t\t<xmax>543</xmax>\n\t\t\t<ymin>262</ymin>\n\t\t\t<ymax>344</ymax>\n\t\t</bndbox>\n\t</object>\n\t<object>\n\t\t<name>6</name>\n\t\t<pose>Unspecified</pose>\n\t\t<truncated>0</truncated>\n\t\t<difficult>0</difficult>\n\t\t<occluded>0</occluded>\n\t\t<bndbox>\n\t\t\t<xmin>572</xmin>\n\t\t\t<xmax>622</xmax>\n\t\t\t<ymin>258</ymin>\n\t\t\t<ymax>337</ymax>\n\t\t</bndbox>\n\t</object>\n</annotation>\n", "format": "xml", "source": "RectLabel" }, "converted": "{\"key\":\"water008_79_jpg.rf.5d0608021af365e706a299a6bd3dfd0a.jpg\",\"width\":640,\"height\":640,\"boxes\":[{\"label\":\"text\",\"x\":37.5,\"y\":338,\"width\":57,\"height\":84},{\"label\":\"text\",\"x\":121,\"y\":333,\"width\":58,\"height\":86},{\"label\":\"text\",\"x\":198.5,\"y\":323,\"width\":57,\"height\":90},{\"label\":\"text\",\"x\":282,\"y\":319,\"width\":58,\"height\":84},{\"label\":\"text\",\"x\":360,\"y\":312,\"width\":58,\"height\":88},{\"label\":\"text\",\"x\":439,\"y\":307,\"width\":54,\"height\":88},{\"label\":\"text\",\"x\":515.5,\"y\":302,\"width\":53,\"height\":82},{\"label\":\"text\",\"x\":596,\"y\":296.5,\"width\":50,\"height\":79}]}", "extra": null, "used": true, "key": [ "water008_79_jpg.rf.5d0608021af365e706a299a6bd3dfd0a.jpg", "water008_79_jpg.rf.5d0608021af365e706a299a6bd3dfd0a.jpg", "water008_79_jpg.rf.5d0608021af365e706a299a6bd3dfd0a.jpeg", "water008_79_jpg.rf.5d0608021af365e706a299a6bd3dfd0a.png", "water008_79_jpg.rf.5d0608021af365e706a299a6bd3dfd0a.bmp" ] } }, "camera": null, "classes": [ "numbers" ], "created": { "_seconds": 1712126686, "_nanoseconds": 896000000 }, "datasets": [ "hc3xhO1DWTrQALf26PP5" ], "extension": "jpg", "hashes": [ "e03fcf0e8b9eb89b95296c47f709e6e1" ], "height": 640, "id": "Ckcqeril0ZZDvjAge0Fz", "label": [ "Unlabeled" ], "metadata": { "no": "metadata" }, "name": "water008_79.jpg", "owner": "fV7gb31Xkcd1iZD6BhXxjvuoOCA2", "projects": [ "hc3xhO1DWTrQALf26PP5" ], "r": 0.9994721562417525, "split": "valid", "split.hc3xhO1DWTrQALf26PP5": "valid", "tags": [ "hc3xhO1DWTrQALf26PP5:status:approved" ], "updated": { "_seconds": 1712126686, "_nanoseconds": 896000000 }, "updatedDate": "Apr 3, 2024", "updatedTime": "6:44AM", "updatedTimezone": "+00:00", "uploader": "fV7gb31Xkcd1iZD6BhXxjvuoOCA2", "width": 640 }
{ "boxes": [ { "label": "text", "x": 37.5, "y": 338, "width": 57, "height": 84 }, { "label": "text", "x": 121, "y": 333, "width": 58, "height": 86 }, { "label": "text", "x": 198.5, "y": 323, "width": 57, "height": 90 }, { "label": "text", "x": 282, "y": 319, "width": 58, "height": 84 }, { "label": "text", "x": 360, "y": 312, "width": 58, "height": 88 }, { "label": "text", "x": 439, "y": 307, "width": 54, "height": 88 }, { "label": "text", "x": 515.5, "y": 302, "width": 53, "height": 82 }, { "label": "text", "x": 596, "y": 296.5, "width": 50, "height": 79 } ], "height": 640, "key": "water008_79_jpg.rf.5d0608021af365e706a299a6bd3dfd0a.jpg", "width": 640 }
Annotation Editor
Smart Polygon