TRY THIS MODEL
Drop image here to test
multi-object-detection-6pinw/1 (latest)
The training set is empty.
The validation set is empty.
The testing set is empty.
CLASSES
LAYERS
{ "accumulator": null, "annotation_jobs": [ "ZFwLkAY5G1Q2tj45bOBT/w9v6nKQUq1mhhEL6xFUl", "OgsVSbY2H5Seyim0XzOy/by5AvMJSe6weWiEgdo7x" ], "annotations": { "Multi": { "original": { "annotation": "<annotation>\n\t<folder />\n\t<filename>62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.jpg</filename>\n\t<path>62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.jpg</path>\n\t<source>\n\t\t<database>roboflow.com</database>\n\t</source>\n\t<size>\n\t\t<width>640</width>\n\t\t<height>640</height>\n\t\t<depth>3</depth>\n\t</size>\n\t<segmented>0</segmented>\n\t<object>\n\t\t<name>dog</name>\n\t\t<pose>Unspecified</pose>\n\t\t<truncated>0</truncated>\n\t\t<difficult>0</difficult>\n\t\t<occluded>0</occluded>\n\t\t<bndbox>\n\t\t\t<xmin>156</xmin>\n\t\t\t<xmax>537</xmax>\n\t\t\t<ymin>8</ymin>\n\t\t\t<ymax>639</ymax>\n\t\t</bndbox>\n\t</object>\n</annotation>", "format": "xml", "source": "RectLabel" }, "converted": "{\"key\":\"62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.jpg\",\"width\":640,\"height\":640,\"boxes\":[{\"label\":\"dog\",\"x\":345.5,\"y\":322.5,\"width\":381,\"height\":631}]}", "extra": null, "used": true, "key": [ "62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.jpg", "62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.jpg", "62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.jpeg", "62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.png", "62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.bmp" ] }, "Multi-Object": { "original": { "annotation": "<annotation>\n\t<folder />\n\t<filename>62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.jpg</filename>\n\t<path>62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.jpg</path>\n\t<source>\n\t\t<database>roboflow.com</database>\n\t</source>\n\t<size>\n\t\t<width>640</width>\n\t\t<height>640</height>\n\t\t<depth>3</depth>\n\t</size>\n\t<segmented>0</segmented>\n\t<object>\n\t\t<name>dog</name>\n\t\t<pose>Unspecified</pose>\n\t\t<truncated>0</truncated>\n\t\t<difficult>0</difficult>\n\t\t<occluded>0</occluded>\n\t\t<bndbox>\n\t\t\t<xmin>156</xmin>\n\t\t\t<xmax>537</xmax>\n\t\t\t<ymin>8</ymin>\n\t\t\t<ymax>639</ymax>\n\t\t</bndbox>\n\t</object>\n</annotation>", "format": "xml", "source": "RectLabel" }, "converted": "{\"key\":\"62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.jpg\",\"width\":640,\"height\":640,\"boxes\":[{\"label\":\"dog\",\"x\":345.5,\"y\":322.5,\"width\":381,\"height\":631}]}", "extra": null, "used": true, "key": [ "62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.jpg", "62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.jpg", "62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.jpeg", "62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.png", "62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.bmp" ] } }, "camera": null, "classes": [ "Multi", "Multi-Object" ], "created": { "_seconds": 1721277227, "_nanoseconds": 185000000 }, "datasets": [ "ZFwLkAY5G1Q2tj45bOBT", "OgsVSbY2H5Seyim0XzOy" ], "extension": "jpg", "hashes": [ "df47bcfd5b0d7668ae27195b46b8794d" ], "height": 640, "id": "LzaLvhxEEUSQ7icMcYe9", "label": [ "Unlabeled" ], "metadata": { "no": "metadata" }, "name": "62.jpg", "owner": "ZheSJ9byBwcshvXAV5Ojd0WaZDw1", "projects": [ "ZFwLkAY5G1Q2tj45bOBT", "OgsVSbY2H5Seyim0XzOy" ], "r": 0.311837723281865, "split": "train", "split.OgsVSbY2H5Seyim0XzOy": "train", "split.ZFwLkAY5G1Q2tj45bOBT": "train", "tags": [ "ZFwLkAY5G1Q2tj45bOBT:status:approved", "OgsVSbY2H5Seyim0XzOy:status:approved" ], "updated": { "_seconds": 1721369432, "_nanoseconds": 640000000 }, "updatedDate": "Jul 19, 2024", "updatedTime": "6:10AM", "updatedTimezone": "+00:00", "uploader": "ZheSJ9byBwcshvXAV5Ojd0WaZDw1", "width": 640 }
{ "boxes": [ { "label": "dog", "x": 345.5, "y": 322.5, "width": 381, "height": 631 } ], "height": 640, "key": "62_jpg.rf.44f5646e6137af62f4bbc12c558f50d2.jpg", "width": 640 }
Annotation Editor
Smart Polygon