mAP
88.1%
View Model Graphs

Samples from Test Set

Upload Image

Drop file here or

Paste Image URL

Try On My Machine
0
fps
0
objects detected

Confidence Threshold: 50

0%

100%

Label Display Mode:
Getting Prediction...
Copy
Copied
Roboflow Inference

Inference is Roboflow's open source deployment package for developer-friendly vision inference.

How to Deploy the Solidwaste Detection Detection API

Using Roboflow, you can deploy your object detection model to a range of environments, including:

  • Raspberry Pi
  • NVIDIA Jetson
  • A Docker container
  • A web page
  • A Python script using the Roboflow SDK.

Below, we have instructions on how to use our deployment options.

Code Snippets

Hosted API
Utilities
Python
JavaScript

Infer on Local and Hosted Images

To install dependencies, pip install inference-sdk.

Then, add the following code snippet to a Python script:

from inference_sdk import InferenceHTTPClient

CLIENT = InferenceHTTPClient(
    api_url="https://outline.roboflow.com",
    api_key="API_KEY"
)

result = CLIENT.infer(your_image.jpg, model_id="solidwaste-detection/5")

See the inference-sdk docs

Node.js

We're using axios to perform the POST request in this example so first run npm install axios to install the dependency.

Inferring on a Local Image

const axios = require("axios");
const fs = require("fs");

const image = fs.readFileSync("YOUR_IMAGE.jpg", {
    encoding: "base64"
});

axios({
    method: "POST",
    url: "https://outline.roboflow.com/solidwaste-detection/5",
    params: {
        api_key: "API_KEY"
    },
    data: image,
    headers: {
        "Content-Type": "application/x-www-form-urlencoded"
    }
})
    .then(function (response) {
        console.log(response.data);
    })
    .catch(function (error) {
        console.log(error.message);
    });

Inferring on an Image Hosted Elsewhere via URL

const axios = require("axios");

axios({
    method: "POST",
    url: "https://outline.roboflow.com/solidwaste-detection/5",
    params: {
        api_key: "API_KEY",
        image: "IMAGE_URL"
    }
})
    .then(function (response) {
        console.log(response.data);
    })
    .catch(function (error) {
        console.log(error.message);
    });