Dataset Versions

Versions
2023-04-03 7:53pm
v75
·
2 years ago
2023-04-03 7:32pm
v74
·
2 years ago
2023-04-03 7:32pm
v73
·
2 years ago
2023-03-30 9:17pm
v72
·
2 years ago
2023-03-29 10:09am
v71
·
2 years ago
2023-03-14 8:46pm
v69
·
2 years ago
2023-03-14 8:47am
v67
·
2 years ago
2023-02-28 9:25pm
v66
·
2 years ago
2023-02-22 2:05pm
v65
·
2 years ago
Thames -Large- Small- Submarine-
v64
·
2 years ago
Thames -Sailboat-
v61
·
2 years ago
2023-02-16 2:34pm
v58
·
2 years ago
2023-02-16 1:53pm
v56
·
2 years ago
2023-02-15 8:28pm
v55
·
2 years ago
2023-02-15 8:05pm
v54
·
2 years ago
2023-02-15 1:49pm
v53
·
2 years ago
2023-02-15 1:48pm
v52
·
2 years ago
2023-02-13 5:06pm
v51
·
2 years ago
2023-02-13 5:04pm
v50
·
2 years ago
2023-02-12 11:07pm
v49
·
2 years ago
2023-02-12 11:02pm
v48
·
2 years ago
2023-02-12 11:00pm
v47
·
2 years ago
2023-02-12 10:57pm
v46
·
2 years ago
2023-02-12 10:54pm
v45
·
2 years ago
2023-02-12 10:53pm
v44
·
2 years ago
2023-02-12 10:50pm
v43
·
2 years ago
2023-02-12 10:46pm
v42
·
2 years ago
2023-02-12 10:40pm
v41
·
2 years ago
2023-02-12 10:31pm
v40
·
2 years ago
2023-02-12 9:59pm
v39
·
2 years ago
2023-02-12 9:32pm
v38
·
2 years ago
2023-02-12 7:24pm
v37
·
2 years ago
2023-02-09 2:26pm
v36
·
2 years ago
2023-02-09 8:30am
v35
·
2 years ago
2023-02-09 8:24am
v34
·
2 years ago
2023-02-09 8:23am
v33
·
2 years ago
2023-02-08 11:29pm
v30
·
2 years ago
2023-02-08 11:26pm
v29
·
2 years ago
2023-02-08 7:22pm
v28
·
2 years ago
2023-02-08 4:50pm
v27
·
2 years ago
2023-02-08 4:42pm
v26
·
2 years ago
2023-02-08 4:37pm
v25
·
2 years ago
2023-02-08 2:12pm
v24
·
2 years ago
2023-02-08 9:32am
v19
·
2 years ago
2023-02-08 9:31am
v18
·
2 years ago
2023-02-08 9:30am
v17
·
2 years ago
2023-02-07 8:11pm
v16
·
2 years ago
2023-02-07 8:07pm
v15
·
2 years ago
2023-02-07 8:06pm
v14
·
2 years ago
2023-02-07 8:05pm
v13
·
2 years ago
2023-02-06 10:42pm
v12
·
2 years ago
2023-02-06 10:35pm
v11
·
2 years ago
2023-02-06 8:17pm
v10
·
2 years ago
2023-02-06 8:15pm
v9
·
2 years ago
2023-02-06 8:04pm
v8
·
2 years ago
2023-02-06 8:40am
v7
·
2 years ago
2023-01-17 7:27pm
v3
·
2 years ago
v61

Thames -Sailboat-

Generated on Feb 16, 2023

Popular Download Formats

Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.

Dataset Split

Train Set 100%
66Images
Valid Set %
0Images
Test Set %
0Images

Preprocessing

Auto-Orient: Applied
Resize: Fit (black edges) in 2048x2048
Modify Classes: 28 remapped, 106 dropped
Filter Null: Require all images to contain annotations.

Augmentations

No augmentations were applied.
ORDA2023CAPSTONE
Annotate
2_2023-02-09_16-21-30_152_mp4-8.jpg
Show/hide annotations(H)
train
Labels
Attributes
Raw Data

Annotations

Group:
Boats

CLASSES

LAYERS

 
sailboat2
5

Unused Classes

Boot
Cargo
Catamaran
Commercial Vessel
Cruise
Dinghy
Jetski
Kanu
LargeVessel
LargeVessel1
LargeVessel2
RecreationalVessel
RecreationalVessel1
RecreationalVessel2
RecreationalVessel\
SUP
Segelboot
SpeedBoat
Submarine
Submarine1
Submarine2
Tretboot
Yacht
a
aeroplane
apple
backpack
banana
baseball bat
baseball glove
bear
bed
bench
bicycle
bird
boat
book
bottle
bowl
buoy
bus
cake
car
cargo
cargoship
carrot
cat
cell phone
chair
clock
commercial vessel
cow
cup
diningtable
dock
dog
donut
elephant
ferry
fire hydrant
fishingboat
fork
frisbee
giraffe
handbag
horse
hot dog
keyboard
kite
knife
laptop
large vessel
microwave
motorbike
mouse
navalvessels
orange
oven
parking meter
passengership
person
pizza
pottedplant
recreational vessel
refrigerator
remote
sailboat
sandwich
sheep
sink
skateboard
skis
small vessel
snowboard
sofa
spoon
sports ball
stop sign
submarine
suitcase
surfboard
teddy bear
tennis racket
tie
toilet
toothbrush
traffic light
train
truck
tvmonitor
umbrella
vase
wine glass

Tags

No Tags Applied
Type and select tags below to add them to the image.

Attributes

2_2023-02-09_16-21-30_152_mp4-8.jpg

2048x2048
4.19MP

Updated Feb 16, 2023

7:42PM
GMT+00:00

Generated by Roboflow

Training Set

Transforms

Auto-Orient Applied
Resize Fit (black edges) in 2048x2048
Modify Classes Applied

Annotation History

Loading...

Raw Data

{
    "camera": "Generated by Roboflow",
    "classes": {
        "sailboat": 1218,
        "bicycle": 294,
        "vase": 16,
        "laptop": 9,
        "remote": 9,
        "Boot": 167,
        "cake": 7,
        "LargeVessel": 185,
        "fire hydrant": 7,
        "cargo": 2,
        "dock": 72,
        "motorbike": 51,
        "sofa": 19,
        "Cruise": 85,
        "baseball bat": 7,
        "Submarine": 82,
        "SUP": 13,
        "horse": 100,
        "toilet": 12,
        "giraffe": 14,
        "RecreationalVessel\\": 1,
        "dog": 226,
        "cup": 104,
        "Cargo": 50,
        "passengership": 2,
        "surfboard": 448,
        "parking meter": 11,
        "pottedplant": 145,
        "bottle": 130,
        "cell phone": 47,
        "sports ball": 40,
        "buoy": 3,
        "RecreationalVessel1": 1332,
        "RecreationalVessel2": 361,
        "a": 1,
        "chair": 850,
        "navalvessels": 513,
        "Tretboot": 14,
        "boat": 9233,
        "handbag": 230,
        "teddy bear": 17,
        "kite": 416,
        "bed": 11,
        "bus": 87,
        "SpeedBoat": 15,
        "toothbrush": 0,
        "aeroplane": 100,
        "cow": 173,
        "frisbee": 38,
        "hot dog": 16,
        "mouse": 1,
        "tie": 20,
        "LargeVessel1": 1948,
        "Yacht": 81,
        "LargeVessel2": 171,
        "bird": 1145,
        "donut": 3,
        "spoon": 16,
        "bear": 5,
        "cargoship": 215,
        "Kanu": 9,
        "train": 92,
        "banana": 147,
        "suitcase": 90,
        "bench": 412,
        "sink": 4,
        "stop sign": 6,
        "Dinghy": 39,
        "clock": 106,
        "Segelboot": 14,
        "baseball glove": 2,
        "knife": 99,
        "person": 10293,
        "skis": 31,
        "fishingboat": 2,
        "elephant": 35,
        "refrigerator": 3,
        "snowboard": 7,
        "Catamaran": 36,
        "Submarine1": 279,
        "sailboat2": -131,
        "skateboard": 49,
        "book": 38,
        "truck": 269,
        "bowl": 97,
        "diningtable": 166,
        "apple": 57,
        "pizza": 6,
        "car": 1156,
        "cat": 22,
        "ferry": 101,
        "Submarine2": 24,
        "microwave": 2,
        "sheep": 65,
        "keyboard": 3,
        "wine glass": 44,
        "oven": 4,
        "tvmonitor": 11,
        "umbrella": 967,
        "sandwich": 15,
        "orange": 25,
        "fork": 43,
        "Jetski": 9,
        "backpack": 196,
        "RecreationalVessel": 1091,
        "tennis racket": 2,
        "carrot": 5,
        "traffic light": 50
    },
    "datasets": [
        "IH5Nuz5E75cdYmfxhGAN"
    ],
    "destination": "8d93b7e7aaad4367817f780974760171",
    "height": 2048,
    "id": "24GqUYzjFcVXvP6NLWTG",
    "label": [],
    "labels": [],
    "name": "2_2023-02-09_16-21-30_152_mp4-8.jpg",
    "numSteps": 3,
    "owner": "xkz3UtNRyIgl7ujwos4QMTnzaps1",
    "preprocessing": [
        "auto-orient",
        "resize:[\"Fit (black edges) in\",2048,2048]",
        "remap:[\"8c778baf0ad3c8895806bbd5fe5efb53\"]"
    ],
    "preprocessingParsed": [
        {
            "name": "Auto-Orient",
            "value": "Applied"
        },
        {
            "name": "Resize",
            "value": "Fit (black edges) in 2048x2048"
        },
        {
            "name": "Modify Classes",
            "value": "Applied"
        }
    ],
    "source": "24GqUYzjFcVXvP6NLWTG",
    "split": "train",
    "split.IH5Nuz5E75cdYmfxhGAN.61": "train",
    "status": "generated",
    "transforms": "[\n    \"auto-orient\",\n    \"resize:[\\\"Fit (black edges) in\\\",2048,2048]\",\n    \"remap:[\\\"8c778baf0ad3c8895806bbd5fe5efb53\\\"]\"\n]",
    "updated": {
        "_seconds": 1676576541,
        "_nanoseconds": 615000000
    },
    "updatedDate": "Feb 16, 2023",
    "updatedTime": "7:42PM",
    "updatedTimezone": "+00:00",
    "versions": [
        "IH5Nuz5E75cdYmfxhGAN/61"
    ],
    "width": 2048
}
{
    "boxes": [
        {
            "label": "sailboat2",
            "x": 236,
            "y": 976,
            "width": 41,
            "height": 104
        },
        {
            "label": "sailboat2",
            "x": 276,
            "y": 985,
            "width": 36,
            "height": 91
        },
        {
            "label": "sailboat2",
            "x": 420,
            "y": 987,
            "width": 58,
            "height": 85
        },
        {
            "label": "sailboat2",
            "x": 1684,
            "y": 1027,
            "width": 103,
            "height": 145
        },
        {
            "label": "sailboat2",
            "x": 132,
            "y": 980,
            "width": 57,
            "height": 90
        }
    ],
    "height": 2048,
    "key": "2_2023-02-09_16-21-30_152_mp4-8.jpg",
    "width": 2048
}

Annotation Editor

Delete
Save (Enter)

Smart Polygon

Click inside to remove area or outside to expand.
Undo
Redo
Simplify
Simple Complex
Delete
Finish (Enter)
50%
Reset