Dataset Versions
Versions
2024-06-06 12:11am
v20
· 7 months ago
2024-05-27 12:23pm
v19
· 7 months ago
2024-05-27 12:05pm
v18
· 7 months ago
2024-05-27 11:39am
v17
· 7 months ago
2024-05-27 11:07am
v16
· 7 months ago
2024-05-27 2:36am
v15
· 7 months ago
2024-05-27 1:48am
v14
· 7 months ago
2024-05-27 12:41am
v13
· 7 months ago
2024-05-27 12:33am
v12
· 7 months ago
2024-05-26 10:11pm
v11
· 7 months ago
2024-05-26 8:18pm
v10
· 7 months ago
2024-05-26 6:12pm
v9
· 7 months ago
2024-05-26 5:53pm
v8
· 7 months ago
2024-05-13 6:24pm
v7
· 8 months ago
2024-05-13 5:26pm
v6
· 8 months ago
2024-05-06 10:22am
v5
· 8 months ago
2024-05-06 9:36am
v4
· 8 months ago
2024-05-03 3:48pm
v3
· 8 months ago
2024-05-03 1:41pm
v2
· 8 months ago
2024-03-31 9:12pm
v1
· 9 months ago
v8
2024-05-26 5:53pm
Generated on May 26, 2024
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
3528 Total Images
View All ImagesDataset Split
Train Set 87%
3060Images
Valid Set 9%
316Images
Test Set 4%
152Images
Preprocessing
Auto-Orient: Applied
Resize: Stretch to 1024x1024
Auto-Adjust Contrast: Using Histogram Equalization
Grayscale: Applied
Tile: 2 rows x 2 columns
Modify Classes: 0 remapped, 0 dropped
Augmentations
Outputs per training example: 3
Flip: Horizontal, Vertical
Rotation: Between -45° and +45°
Shear: ±10° Horizontal, ±10° Vertical
Brightness: Between -15% and +15%