Dataset Versions

v1

2024-06-14 7:29pm

Generated on Jun 14, 2024

Popular Download Formats

Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.

Dataset Split

Train Set 87%
167Images
Valid Set 8%
16Images
Test Set 4%
8Images

Preprocessing

Auto-Orient: Applied
Isolate Objects: Applied
Static Crop: 25-75% Horizontal Region, 25-75% Vertical Region
Dynamic Crop: Class: Defect
Resize: Stretch to 640x640
Auto-Adjust Contrast: Using Adaptive Equalization
Grayscale: Applied
Tile: 2 rows x 2 columns
Filter Null: Require all images to contain annotations.

Augmentations

Outputs per training example: 3
Flip: Horizontal
90° Rotate: Clockwise, Counter-Clockwise
Crop: 0% Minimum Zoom, 20% Maximum Zoom
Rotation: Between -15° and +15°
Shear: ±10° Horizontal, ±10° Vertical
Grayscale: Apply to 15% of images
Hue: Between -15° and +15°
Saturation: Between -25% and +25%
Brightness: Between -15% and +15%
Exposure: Between -10% and +10%
Blur: Up to 2.5px
Noise: Up to 10% of pixels
Cutout: 5 boxes with 10% size each
Mosaic: Applied
Bounding Box: Flip: Horizontal
Bounding Box: 90° Rotate: Clockwise, Counter-Clockwise
Bounding Box: Crop: 0% Minimum Zoom, 20% Maximum Zoom
Bounding Box: Rotation: Between -15° and +15°
Bounding Box: Shear: ±10° Horizontal, ±10° Vertical
Bounding Box: Brightness: Between -15% and +15%
Bounding Box: Exposure: Between -10% and +10%
Bounding Box: Blur: Up to 2.5px
Bounding Box: Noise: Up to 0.1% of pixels

Similar Projects

See More