Dataset Versions
Versions
2023-09-25 5:21am
v29
· a year ago
2023-09-25 5:21am
v28
· a year ago
2023-09-25 5:21am
v27
· a year ago
2023-09-25 5:21am
v26
· a year ago
2023-09-25 5:21am
v25
· a year ago
2023-09-25 3:02am
v24
· a year ago
2023-09-25 3:02am
v23
· a year ago
2023-09-25 3:02am
v22
· a year ago
2023-09-25 3:01am
v21
· a year ago
2023-09-23 2:29am
v20
· a year ago
2023-09-23 2:29am
v19
· a year ago
2023-09-23 2:29am
v18
· a year ago
2023-09-23 2:29am
v17
· a year ago
2023-09-23 12:45am
v16
· a year ago
2023-09-20 11:50pm
v15
· a year ago
2023-09-20 11:48pm
v13
· a year ago
2023-09-20 11:48pm
v12
· a year ago
2023-09-20 11:48pm
v11
· a year ago
2023-09-20 11:47pm
v10
· a year ago
2023-09-19 6:05pm
v9
· a year ago
2023-09-19 5:59pm
v8
· a year ago
2023-09-19 5:59pm
v7
· a year ago
2023-09-19 5:59pm
v6
· a year ago
2023-09-19 5:59pm
v5
· a year ago
2023-09-19 4:43pm
v4
· a year ago
2023-09-19 4:43pm
v3
· a year ago
2023-09-19 4:43pm
v2
· a year ago
2023-09-19 4:42pm
v1
· a year ago
v20
2023-09-23 2:29am
Generated on Sep 22, 2023
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
495 Total Images
View All ImagesDataset Split
Train Set 100%
495Images
Valid Set %
0Images
Test Set %
0Images
Preprocessing
Auto-Orient: Applied
Resize: Fit within 640x640
Augmentations
Outputs per training example: 3
Crop: 0% Minimum Zoom, 10% Maximum Zoom
Shear: ±15° Horizontal, ±15° Vertical
Blur: Up to 2.5px
Noise: Up to 5% of pixels