Dataset Versions
Versions
2024-08-20 8:35am
v16
· 5 months ago
dakraam-dakkapel-zonnepanelen-schoorsteen no noise v3 with 100 daken
v15
· 5 months ago
dakraam-dakkapel-zonnepanelen-schoorsteen no noise v3 with 100 daken
v14
· 5 months ago
dakraam-dakkapel-zonnepanelen-schoorsteen no noise v3
v13
· 5 months ago
dakraam-dakkapel-zonnepanelen-schoorsteen no noise v2
v12
· 5 months ago
dakraam-dakkapel-zonnepanelen-schoorsteen no noise
v11
· 5 months ago
dakraam-dakkapel-zonnepanelen-schoorsteen no noise and turn v2
v9
· 5 months ago
dakraam-dakkapel-zonnepanelen-schoorsteen no noise and turn
v8
· 6 months ago
dakraam-dakkapel-zonnepanelen-schoorsteen
v7
· 6 months ago
All on roof v2
v6
· 6 months ago
buildings
v5
· 6 months ago
lower parts
v4
· 6 months ago
All on roof
v3
· 6 months ago
2023-03-17 2:40pm
v2
· 2 years ago
2023-01-20 3:29pm
v1
· 2 years ago
v16
2024-08-20 8:35am
Generated on Aug 20, 2024
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
2283 Total Images
View All ImagesDataset Split
Train Set 90%
2055Images
Valid Set 10%
228Images
Test Set %
0Images
Preprocessing
Auto-Orient: Applied
Resize: Stretch to 640x640
Modify Classes: 0 remapped, 22 dropped
Augmentations
Outputs per training example: 3
Flip: Horizontal
Crop: 0% Minimum Zoom, 1% Maximum Zoom
Rotation: Between -8° and +8°