Dataset Versions
Versions
2024-10-21 4:59pm
v26
· a month ago
2024-10-02 1:13pm
v25
· 2 months ago
2024-10-02 8:25am
v24
· 2 months ago
2024-04-29 4:37pm
v23
· 7 months ago
2024-04-25 10:53am
v22
· 7 months ago
2024-04-24 11:12am
v21
· 7 months ago
2024-04-24 9:36am
v20
· 7 months ago
2024-04-15 4:05pm
v19
· 7 months ago
2024-04-15 4:04pm
v18
· 7 months ago
2024-04-15 2:11pm
v17
· 7 months ago
2024-04-15 2:09pm
v16
· 7 months ago
2024-04-15 2:06pm
v15
· 7 months ago
2024-04-15 12:05pm
v14
· 7 months ago
2024-04-15 11:47am
v13
· 7 months ago
2024-04-15 11:46am
v12
· 7 months ago
2024-04-05 9:22am
v11
· 8 months ago
2024-04-04 2:13pm
v10
· 8 months ago
2024-04-01 3:58pm
v9
· 8 months ago
2024-03-13 10:21am
v8
· 8 months ago
2024-03-12 1:16pm
v7
· 8 months ago
2024-03-01 11:25am
v6
· 9 months ago
2024-02-29 5:11pm
v5
· 9 months ago
2024-02-29 9:07am
v4
· 9 months ago
2024-02-27 5:56pm
v3
· 9 months ago
2024-02-27 5:18pm
v2
· 9 months ago
2024-02-27 2:27pm
v1
· 9 months ago
v9
2024-04-01 3:58pm
Generated on Apr 1, 2024
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
351 Total Images
View All ImagesDataset Split
Train Set 87%
306Images
Valid Set 9%
32Images
Test Set 4%
13Images
Preprocessing
Auto-Orient: Applied
Resize: Fit within 640x640
Augmentations
Outputs per training example: 3
Rotation: Between -5° and +5°
Saturation: Between -5% and +5%
Brightness: Between -5% and +5%
Blur: Up to 2.5px
Noise: Up to 0.54% of pixels