Top Crisp Packet Computer Vision Models
The models below have been fine-tuned for various crisp packet detection tasks. You can try out each model in your browser, or test an edge deployment solution (i.e. to an NVIDIA Jetson). You can use the datasets associated with the models below as a starting point for building your own crisp packet detection model.
At the bottom of this page, we have guides on how to count crisp packets in images and videos.
Trash Detection
TACO: Trash Annotations in Context Dataset
trash-detection
TACO: Object Detection
Trash detector 2000
Trash 2.0
project
Waste Detection
Trash Detection2
TACO dataset
trash
TACO
Waste detection
Underwater Plastic Classification
Litter Detection
trash_object_detection
trash
FYP
Taco garbage
2
Taco Unofficial All Class
Taco to Yolo Final
TACO
LitterLocator - Home Project
new_trash_detection2
Waste detector v3
Taco
taco1
Waste Recognition with TACO
trash
Segment
Trashes
ImmerseGTData
RecycleMe
Waste detector
Litter detection
convert3
My First Project
TACO_YOLOv8_2
TACO
taco3
TACO
citrushackandcustom
TACO
e2-walle_taco
Guide: How to Count Crisp Packets with Computer Vision
With a model hosted on Roboflow like the ones above and the open source supervision Python package, you can count crisp packets in your images and videos.
The following code snippet counts the number of crisp packets present in an image.
To use the snippet below, you will need to run pip install roboflow supervision. Replace the project name and model name with any model trained on Universe, such as those listed above.
import supervision as sv
import roboflow
roboflow.login()
rf = roboflow.Roboflow()
# replace with the crisp packet project you choose above
project = rf.workspace("trash-dataset-for-oriented-bounded-box").project("trash-detection-1fjjc")
crisp_packet_model = project.version(14).model
results = crisp_packet_model.predict("crisp_packet.jpg").json()
crisp_packets = sv.Detections.from_roboflow(results)
# print number of crisp packets
print(len(crisp_packets)) Guide: How to Count Crisp Packets in a Zone
With a bit more code, you can count the number of crisp packet present in a specific zone of your image or video.
The following code snippet counts the number of crisp packet present in each frame in a video.
To use the snippet below, you will need to run pip install roboflow supervision. Replace the project name and model name with any model trained on Universe, such as those listed above.
Read our blog post on counting objects in a zone
import numpy as np
import supervision as sv
import roboflow
SOURCE_VIDEO_PATH = "crisp_packet.mp4"
TARGET_VIDEO_PATH = "crisp_packet_out.mp4"
# use https://roboflow.github.io/polygonzone/ to get the points for your shape
polygon = np.array([
# draw 50x50 box in top left corner
[0, 0],
[50, 0],
[50, 50],
[0, 50]
])
roboflow.login()
rf = roboflow.Roboflow()
# replace with the crisp packet project you choose above
project = rf.workspace("trash-dataset-for-oriented-bounded-box").project("trash-detection-1fjjc")
crisp_packet_model = project.version(14).model
# create BYTETracker instance
crisp_packet_tracker = sv.ByteTrack(track_thresh=0.25, track_buffer=30, match_thresh=0.8, frame_rate=30)
# create VideoInfo instance
video_info = sv.VideoInfo.from_video_path(SOURCE_VIDEO_PATH)
# create frame generator
generator = sv.get_video_frames_generator(SOURCE_VIDEO_PATH)
# create PolygonZone instance
zone = sv.PolygonZone(polygon=polygon, frame_resolution_wh=(video_info.width, video_info.height))
# create box annotator
box_annotator = sv.BoxAnnotator(thickness=4, text_thickness=4, text_scale=2)
colors = sv.ColorPalette.default()
# create instance of BoxAnnotator
zone_annotator = sv.PolygonZoneAnnotator(thickness=4, text_thickness=4, text_scale=2, zone=zone, color=colors.colors[0])
# define call back function to be used in video processing
def callback(frame: np.ndarray, index:int) -> np.ndarray:
# model prediction on single frame and conversion to supervision Detections
results = crisp_packet_model.predict(frame).json()
crisp_packets = sv.Detections.from_roboflow(results)
# show crisp packet detections in real time
print(crisp_packets)
# tracking crisp packet detections
crisp_packets = crisp_packet_tracker.update_with_detections(crisp_packets)
annotated_frame = box_annotator.annotate(scene=frame, detections=crisp_packets)
annotated_frame = zone_annotator.annotate(scene=annotated_frame)
# return frame with box and line annotated result
return annotated_frame
# process the whole video
sv.process_video(
source_path = SOURCE_VIDEO_PATH,
target_path = TARGET_VIDEO_PATH,
callback=callback
) Guide: How to Track Crisp Packets Crossing a Line
You can count how many crisp packets have crossed a line using the supervision LineCounter method.
The following code snippet counts the number of crisp packets that cross a line in a video.
To use the snippet below, you will need to run pip install roboflow supervision. Replace the project name and model name with any model trained on Universe, such as those listed above.
import numpy as np
import supervision as sv
import roboflow
SOURCE_VIDEO_PATH = "crisp_packet.mp4"
TARGET_VIDEO_PATH = "crisp_packet_out.mp4"
# use https://roboflow.github.io/polygonzone/ to get the points for your line
LINE_START = sv.Point(0, 300)
LINE_END = sv.Point(800, 300)
roboflow.login()
rf = roboflow.Roboflow()
# replace with the crisp packet project you choose above
project = rf.workspace("trash-dataset-for-oriented-bounded-box").project("trash-detection-1fjjc")
crisp_packet_model = project.version(14).model
# create BYTETracker instance
crisp_packet_tracker = sv.ByteTrack(track_thresh=0.25, track_buffer=30, match_thresh=0.8, frame_rate=30)
# create VideoInfo instance
video_info = sv.VideoInfo.from_video_path(SOURCE_VIDEO_PATH)
# create frame generator
generator = sv.get_video_frames_generator(SOURCE_VIDEO_PATH)
# create LineZone instance, it is previously called LineCounter class
line_zone = sv.LineZone(start=LINE_START, end=LINE_END)
# create instance of BoxAnnotator
box_annotator = sv.BoxAnnotator(thickness=4, text_thickness=4, text_scale=2)
# create instance of TraceAnnotator
trace_annotator = sv.TraceAnnotator(thickness=4, trace_length=50)
line_zone_annotator = sv.LineZoneAnnotator(thickness=4, text_thickness=4, text_scale=2)
# define call back function to be used in video processing
def callback(frame: np.ndarray, index:int) -> np.ndarray:
# model prediction on single frame and conversion to supervision Detections
results = crisp_packet_model.predict(frame).json()
crisp_packets = sv.Detections.from_roboflow(results)
# show crisp packet detections in real time
print(crisp_packets)
# tracking crisp packet detections
crisp_packets = crisp_packet_tracker.update_with_detections(crisp_packets)
annotated_frame = trace_annotator.annotate(
scene=frame.copy(),
detections=crisp_packets
)
annotated_frame=box_annotator.annotate(
scene=annotated_frame,
detections=crisp_packets
)
# update line counter
line_zone.trigger(crisp_packets)
# return frame with box and line annotated result
return line_zone_annotator.annotate(annotated_frame, line_counter=line_zone)
# process the whole video
sv.process_video(
source_path = SOURCE_VIDEO_PATH,
target_path = TARGET_VIDEO_PATH,
callback=callback
) 
















































