Min
Max
Min
Max
Min
Max
Min
Max
Top Waw Datasets and Models
The datasets below can be used to train fine-tuned models for waw detection. You can explore each dataset in your browser using Roboflow and export the dataset into one of many formats.
At the bottom of this page, we have guides on how to train a model using the waw datasets below.
10k images 1597 classes
+QBbf7zfzqGf79AH +qjk4zigA4Pak5K0v8OaOT1oAPrQe+KTGCKXI9PagA6UYIPHemn8KUDbQIMZxSGl+9SH5TigBeR16elA5oI5oPy9+RTAUdKM9aTtz0oBAoAd0OOtBH50gGc0e3bNACgEdCKKSigD +tQMg+tKOtJ3oAAc0uM9etOxxTO9ACnoaT+GndqaaAHDgUE0xelA5NAAee9B6Unelb7tAB1FBHagfdoNACYpx9qaaFPFABjNHHSgdaO9AAxAHFNJBpT1pGoADSHnp0pTyaB900ANzig8DNPI4FNHWgBoYk8UFs0p603+IUAKOaToetB+9SHrQAuTmkJ560D7tGKAP +tQSDn1HBoBIIxx6UhAuCBn86RT1yMntQfT0o9cEZoAB+vvQOT9KU9eKTpmmAdh096XPXj8CKQZIzRy3I5oA +vQIdmlpuaM8cUDF60duKM4pKBBjNBooJ5oAQnNBPFLSfjQAoORRTQTTqAA88UhpKD1oAM0dqTPNLTAM0DJo7mjIJoAUcUnvR0oFAAaYfbrTyaRugoAZR3oNJQAGl7UmaO1AAKXOfrSUHmgABycUpOfpTcYIzRmgAzR7UnSjNIBSDSYoIpelADOnej3NOPSm9KAP 0fzDHGrnnBypqN9PjL4BZd3TFbu1CM7Rmm7Qe2KLCMZLCeKTBIKEY5PNPMUitynHpWtkdCM0x0zgrRYDIMSMSxjxjqcVCbMzLiNs5PQdRWww4wQKhSEIR5fynPaiwGYbNYMLKTg8HjmontQpJwdvbvW3KjtGcAbvcUsccTrtI578UWQrHPpagodsZYevU0jJtT5ouc9cYrpPs0aD5RjPoKaIFZ8lB7ZFHKKxzyDzcDJDe1RqJFkzk5FdN9kjOSF4+lRG0TcWCjNLlCxz1wHmB+U5HTFJEtwy5lXbjgc5zW99mjWTKrk9xU32aCUbW3A9+MUcoWOdJYAbgQfepU37eDxW22mx7ducj1qOSxdEKIfkPOPemoia7GOoww3ZAq6kasmUBBqNIXZ+gODU5gnUYEYA9c0xIYxGMFhnPIFJ5AK7gmR3NPhtDMrgHDA9KlMVxbQ4G1moKKkFqWZg6bTnsakaJoWwVyvqKkSWRUyyHfQZp3H+q2r6kUwucD8RwWgsx2+f+leWTjBNe1ePtPaXRYJ9v3JMZHoRXj17FsbkVS2G9TJkqs3Jq5Ioqsy80xkL8KB+NLEDvFLJ1p8YoA0Y12qKlBzUUbblFTAd8UEDs0uc0nenUAJ2puead2pppiP 0oC5OZPeozJUZYimFqLAf 0oooATJFSg5UmiigBQoODTH6bj1zRRQA0MQKlBwKKKAP 0pcc4oooAAMfWgAsTt4z60UUASAEHJNSbcL14JzRRQMsBAADTlHaiimJku0YpAODmiigRIi4YGrancuaKKAP 0q1ErREAZOK51Lq4hUbCTntWpaXExUNNG31qmmjaCRo3UaXCp5vQHNVp0hjMYB6nmm3d4ggY7hmsi3Z7u6XcTsyM0km3czmmmdDIAYkw1VluDFhAM1Z+QBVXBpYrFZpd8pAAPGKLNkSTWoxIZVHmSy45zjNJJcREHMnT3q9Lb2LRFGf9aT+z9PhiJVFkPYv81UosUHZmObpMna3FUblvtkgiQE5rUe2jYNgAU20QRSkH8DTWh1pN6Mr2uixxKPNGT71dYJDFtFWSx7VUntjO3zOfoKHK5qoJLQgt3KzMQwNOulnvBhdwH6GpUsUixgnFX0UhBtUe2am5nOKW5n22hqpWUj5x3qPUsQRYPU8CtlLjCspIyOK5nWRNKzsFOBWsVdnPKo0rIjYN9nLGQdPWmWGbnOF6VmxJLIOjEDtWnpNjNcSMis0Q79q3sYJ3I7u3WWTDSYQHmrmmIqqRjiprzT0sI9xzKfXPNYy388Mx2g4PrUS1VkaQbTuzbkgdmLY4q1aRSKwaoLMTzQ+czAVehlnaMssfArJpo6Yy7GzBeNGNrL8uBlqoXU0U1xiEgn2qq0811EYuY6fZQLaHgFn9azbbZpKyjcf9nO75gahmmtoD1GQKtT3sMSkSkD8a5uaW3nugYg5yegGQadjn53uXJmub4bog6p2OKsW8UkcY87k1cihmW3ByynHp0qHzki4ZyxoskaQqu9hru4Hyjk0SW5MW9pTmntOmQByTUbRO560Jmzi3qKgAiqOOMgnIFSmPBFPQFj2AoKGAKM4FQMGlzjFWXULnJFQp1+XgUxkYPljDGmEnNWDEScgZqJwBlSuKYDApfo1NMe1s5pyyGP5QtNa4QNtKnJppkNAdvrzUTMynAFSMq9aiw5NUSxC+KeuCuc1EyZPNJkKThqpEsRzk9aZ5gHU00yKM00bSKaRLYpbqQaZ5rU3OKTGTVJCbJEdCOetN+1+VxjNDKoHFQKhZiT0qkiHc 0qDzUI6BitRvsZyUztJ4HpV20uZX1G59aNoJ4pvQ0obHFIAKEd6QyhD83AqQniqV43y4oaGtXYvxyq3RgaUvn3rBDlTwSKmS6lXvke9JMp0n0NYtTc5qit7nAZcfSp0uY26MPxquZGTg0Tk4pAabvDdKKomwuaaeKKa7bUzSGjOuG3TMaipWOWJpKyOxKysOQZarKiq8fWrCtTRMh+OKUCgc0d6ZIhHqKYVX0qTPakIFAXIWx2phqVgKYRSHcixQacaQ0ihlFBooKCiiigAooooAXg0YpMUucUhBRRk0vFACUUuKTFADhwKbmijFAH 0rZL1j4zTtZhVJ+O9FFadBLc565QEVjzgeZzRRWLLRQuF6nPSsudQGxzmiioKIJB8tR5oopAMJxTlORRRSAbjmnY5FFFACY7UY9KKKQB0NKelFFABSg4oooAfz1zQOaKKABsCnJ97FFFADlQh+351Oy4HFFFIAKhcU2SQqhUAcjNFFICuo3yc1YVdv0oooAvJyoqUAYzRRQA7Ap2PloooEf 10lOpDQAmKTNLSYoAO1FJ2oNABn379KdmmUZoAdn86dnFMHWjNADw3WjdzUfeg8CgD 11pEx9duDWscVH7SOaeAmvhdzymxaRIhuHNXRcY613UvhTTnH7sPH9DxWZP4Nbkwzq3swxW8a9N9TiqYSvHVxP 16AGgECpkIPsajJ5poJVsigC0jE59qwdetgkiXCjh+D9a2t2CD61X1OAz2EigZYfMPwoaHF2dzle1NJxSmkNQdQZ4pKOnNIeuaYhCcUZyKGPNNzxVJCbHe9VJWLuSOlTSvtTHc1XHNUZSdxmKUU4gYptMgcKcDTBTgcUASKeaSY4WkTrTJzyKuOxnLc3dITbZj3rQNVrNdlrGParBNaIyYE0hpCaQmmIYfvVQ1BvlxV7PJzWXft1+tMB+mL8jN6mtNOTVCwXbbg+taCVI2WEFTCoY6mFWjNi55opM0tMApaTNGaYhaBSUtAgpe9JmjNMCRDtYGuktmBjBrmlPNdBYvmJfcVUSJ7F2ikFLWhmIaKO9JQIO9GaKSgBaQ0UlMAqvcQ7xuXrU9FJq407GQ2eaVHwcGrV1Bn50H1FUGrGUbG8ZXLFFQxy84NSA1BQuaSikJpDAmkzQaQigANFJmjNAC0lJniigApDSmk60gE6U00pooAaaaelONN6UANNMNPNNoAYRTTTzTaAGEUhFPNNNADCKSn03FACEUhpaMZoAZjmkxTiKSgBuOabin45pKBDCOaQin4oxTAjxSYp54oxSAZjik21JikxQAwrSbakI5oxxQBFtzSbalxzxSYxQBHtpStOxS4oAjK0zy6nxSEUDISlJsqfbkU3bQBFto21NikxQI 16UAKD+VFIOv0pf60DClHrSZoB5zQIeTTB19qcTkU3NIY4DPGKU4AxnNNOCMUmcHpTAeDSge9NU8E0buaQDqUEA5NMB5pxbvnNMdwPHBpe1JnBHqaUHtTFcWnA8d6Z9eBQD7UASZpRgjOc0zpjpSg9wKAF7UmTSgmkyO4OQeaAFx3pM8YoB5PtQeB7UAL160UjHBx1opgf 1NQnNAwozxSUUgFpw6U0UooAWj3pKOtABR1oxSUAJQaWkPrQAo5qZahH61IpoAnU1LUS08elUZseKUCm04UxDwcdKWmg04DigRDcLuibJwMVzkg+c1003MbZGeK5qY5Y0FRP 1TVmN1rSnIEZz0rNZeeGoNI7DKSgkg80m6mUFIaKKAEpKWkpiENFBpM0wCkpaSgQUlFFABSUUUAIaKKKYBRRRQAUmaKKADNLSUUAFFFFABRRRmgAooooAKKKKACkpaKAEooooAKKKKBBSUtFACUUUtACUUtJQAUUUUAFFFFABSUtFABSUUtACUUUUAFFLSUAFLSUtABRRRQAo60ppB1oNIQUtJS0Af 1YrgPDV8PscfJyowa7O1vFkXCmqjsIvUU1W3DNOpgFFFFABRRRQAUUUUAf 1bDtVm1VXR9wzjNAEAORRTF6UUgsf