Dataset Versions

v1

SC_augmented_all

Generated on Apr 8, 2024

Popular Download Formats

Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.

Dataset Split

Train Set 93%
12636Images
Valid Set 5%
660Images
Test Set 2%
248Images

Preprocessing

Auto-Orient: Applied
Static Crop: 25-75% Horizontal Region, 25-75% Vertical Region
Dynamic Crop: Class: brown_spot
Resize: Stretch to 640x640
Auto-Adjust Contrast: Using Adaptive Equalization
Grayscale: Applied
Tile: 2 rows x 2 columns

Augmentations

Outputs per training example: 3
Flip: Horizontal
90° Rotate: Clockwise, Counter-Clockwise
Crop: 0% Minimum Zoom, 20% Maximum Zoom
Rotation: Between -15° and +15°
Shear: ±10° Horizontal, ±10° Vertical
Grayscale: Apply to 15% of images
Hue: Between -15° and +15°
Saturation: Between -25% and +25%
Brightness: Between -15% and +15%
Exposure: Between -10% and +10%
Blur: Up to 2.5px
Noise: Up to 0.1% of pixels
Bounding Box: Flip: Horizontal
Bounding Box: Brightness: Between -15% and +15%
Bounding Box: Noise: Up to 0.1% of pixels