Dataset Versions

v4

2023-11-15 2:15pm

Generated on Nov 15, 2023

Popular Download Formats

Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.

Dataset Split

Train Set 88%
1428Images
Valid Set 8%
136Images
Test Set 4%
68Images

Preprocessing

Auto-Orient: Applied
Static Crop: 25-75% Horizontal Region, 25-75% Vertical Region
Resize: Stretch to 640x640
Auto-Adjust Contrast: Using Adaptive Equalization
Grayscale: Applied
Tile: 2 rows x 2 columns

Augmentations

Outputs per training example: 3
Flip: Horizontal, Vertical
90° Rotate: Clockwise, Counter-Clockwise, Upside Down
Crop: 0% Minimum Zoom, 30% Maximum Zoom
Grayscale: Apply to 25% of images
Hue: Between -35° and +35°
Saturation: Between -25% and +25%
Brightness: Between -25% and +25%
Exposure: Between -25% and +25%
Blur: Up to 2.5px
Noise: Up to 5% of pixels
Cutout: 3 boxes with 10% size each