Dataset Versions

v7

2024-11-30 12:07pm

Generated on Nov 30, 2024

Popular Download Formats

Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.

Dataset Split

Train Set 88%
930Images
Valid Set 8%
86Images
Test Set 4%
42Images

Preprocessing

Auto-Orient: Applied
Static Crop: 25-75% Horizontal Region, 25-75% Vertical Region
Resize: Stretch to 640x640
Grayscale: Applied
Auto-Adjust Contrast: Using Adaptive Equalization
Filter Null: Require all images to contain annotations.

Augmentations

Outputs per training example: 3
Flip: Horizontal, Vertical
90° Rotate: Clockwise, Counter-Clockwise
Crop: 0% Minimum Zoom, 20% Maximum Zoom
Rotation: Between -15° and +15°
Shear: ±10° Horizontal, ±10° Vertical
Grayscale: Apply to 15% of images
Hue: Between -15° and +15°
Saturation: Between -25% and +25%
Brightness: Between -15% and +15%
Exposure: Between -15% and +15%
Blur: Up to 2.5px
Noise: Up to 0.1% of pixels
Cutout: 3 boxes with 10% size each
Mosaic: Applied
Bounding Box: Flip: Horizontal
Bounding Box: 90° Rotate: Clockwise, Counter-Clockwise
Bounding Box: Crop: 0% Minimum Zoom, 20% Maximum Zoom
Bounding Box: Rotation: Between -15° and +15°
Bounding Box: Shear: ±10° Horizontal, ±10° Vertical
Bounding Box: Brightness: Between -15% and +15%
Bounding Box: Exposure: Between -10% and +10%
Bounding Box: Blur: Up to 2.5px
Bounding Box: Noise: Up to 0.1% of pixels