Dataset Versions
Versions
2024-08-27 12:45pm
v18
· 3 months ago
2024-07-19 9:43am
v17
· 4 months ago
v5_2024-05-30-Timothee-Abdelmelek
v16
· 5 months ago
v5_2024-05-14-Timothee-Abdelmelek-AutoOrient-Resize-Augmentations
v15
· 6 months ago
v4_2024-05-06-Timothee-Abdelmelek-AutoOrient-Resize-Augmentations
v14
· 6 months ago
2024-04-15 4:39pm
v13
· 7 months ago
v4_2024-04-15-Timothee-Abdelmelek-AutoOrient-Resize-Augmentations
v12
· 7 months ago
v3_2024-04-12-Timothee-Abdelmelek-AutoOrient-Resize-Augmentations
v11
· 7 months ago
v2_2024-04-12-Timothee-Abdelmelek-AutoOrient-Resize-Augmentations
v10
· 7 months ago
v2_2024-04-12-Timothee-Abdelmelek-AutoOrient-Resize
v9
· 7 months ago
v1_2024-04-04-Timothee-Abdelmelek
v8
· 7 months ago
v1_2024-04-03-Timothee-AutoOrient-Resize
v7
· 7 months ago
v1_2024-04-03-Timothee-Abdelmelek-AutoOrient-Resize
v5
· 7 months ago
v11
v3_2024-04-12-Timothee-Abdelmelek-AutoOrient-Resize-Augmentations
Generated on Apr 12, 2024
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
1174 Total Images
View All ImagesDataset Split
Train Set 90%
1062Images
Valid Set 5%
58Images
Test Set 5%
54Images
Preprocessing
Auto-Orient: Applied
Resize: Stretch to 640x640
Augmentations
Outputs per training example: 3
Crop: 0% Minimum Zoom, 15% Maximum Zoom
Rotation: Between -15° and +15°
Brightness: Between -15% and +15%