Dataset Versions
Versions
2023-04-23 10:13pm
v30
· 2 years ago
2023-04-23 10:11pm
v29
· 2 years ago
2023-04-23 10:01pm
v28
· 2 years ago
2023-03-18 6:39pm
v27
· 2 years ago
2023-03-18 6:33pm
v26
· 2 years ago
2023-03-18 6:31pm
v25
· 2 years ago
2023-03-18 6:31pm
v24
· 2 years ago
2023-03-18 6:30pm
v23
· 2 years ago
2023-03-18 6:29pm
v22
· 2 years ago
2023-03-18 6:28pm
v21
· 2 years ago
2023-03-18 6:28pm
v20
· 2 years ago
2023-03-18 6:26pm
v19
· 2 years ago
2023-03-18 6:25pm
v18
· 2 years ago
2023-03-15 2:24pm
v17
· 2 years ago
2023-03-15 2:20pm
v16
· 2 years ago
2023-03-15 2:19pm
v15
· 2 years ago
2023-03-15 2:18pm
v14
· 2 years ago
2023-03-14 10:44pm
v13
· 2 years ago
2023-03-14 6:20pm
v12
· 2 years ago
2023-03-14 6:18pm
v11
· 2 years ago
2023-03-14 6:18pm
v10
· 2 years ago
2023-03-14 6:18pm
v9
· 2 years ago
2023-03-14 6:17pm
v8
· 2 years ago
2023-03-14 6:17pm
v7
· 2 years ago
2023-03-14 6:17pm
v6
· 2 years ago
2023-03-14 6:17pm
v5
· 2 years ago
2023-03-14 6:16pm
v4
· 2 years ago
2023-03-14 6:16pm
v3
· 2 years ago
2023-03-14 6:15pm
v2
· 2 years ago
2023-03-14 6:13pm
v1
· 2 years ago
v23
2023-03-18 6:30pm
Generated on Mar 18, 2023
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
1776 Total Images
View All ImagesDataset Split
Train Set 95%
1680Images
Valid Set 3%
48Images
Test Set 3%
48Images
Preprocessing
Auto-Orient: Applied
Resize: Fill (with center crop) in 640x640
Tile: 4 rows x 4 columns
Augmentations
Outputs per training example: 3
Flip: Horizontal, Vertical
90° Rotate: Clockwise, Counter-Clockwise, Upside Down
Crop: 0% Minimum Zoom, 15% Maximum Zoom
Rotation: Between -35° and +35°
Shear: ±15° Horizontal, ±25° Vertical