Dataset Versions

v2

version 1

Generated on May 19, 2022

Popular Download Formats

Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.

Dataset Split

Train Set 87%
2712Images
Valid Set 8%
260Images
Test Set 4%
136Images

Preprocessing

Auto-Orient: Applied
Resize: Stretch to 416x416
Auto-Adjust Contrast: Using Adaptive Equalization
Grayscale: Applied
Tile: 2 rows x 2 columns

Augmentations

Outputs per training example: 3
Flip: Horizontal, Vertical
90° Rotate: Clockwise, Counter-Clockwise, Upside Down
Rotation: Between -15° and +15°
Shear: ±15° Horizontal, ±15° Vertical
Grayscale: Apply to 25% of images
Hue: Between -25° and +25°
Saturation: Between -25% and +25%
Brightness: Between -25% and +25%
Exposure: Between -25% and +25%
Bounding Box: Flip: Horizontal, Vertical
Bounding Box: 90° Rotate: Clockwise, Counter-Clockwise, Upside Down
Bounding Box: Rotation: Between -15° and +15°
Bounding Box: Shear: ±15° Horizontal, ±15° Vertical
Bounding Box: Brightness: Between -25% and +25%
Bounding Box: Exposure: Between -25% and +25%
Bounding Box: Noise: Up to 3% of pixels