Dataset Versions
Versions
2023-02-13 10:45pm
v30
· 2 years ago
2023-02-13 10:43pm
v29
· 2 years ago
no_aug_resize
v28
· 2 years ago
2023-01-22 10:36pm
v27
· 2 years ago
2023-01-22 10:35pm
v26
· 2 years ago
open_circuit_hue
v25
· 2 years ago
2023-01-21 9:54pm
v24
· 2 years ago
open_circuit_flip
v23
· 2 years ago
open_circuit_noise
v22
· 2 years ago
2023-01-21 9:42pm
v21
· 2 years ago
mouse_bite_hue
v20
· 2 years ago
mouse_bite_noise
v19
· 2 years ago
mouse_bite_flip
v18
· 2 years ago
mouse_bite_rotate
v17
· 2 years ago
missing_hole_rotate
v16
· 2 years ago
missing_hole_flip
v15
· 2 years ago
missing_hole_hue
v14
· 2 years ago
missing_hole_noise
v13
· 2 years ago
spurious_copper_noise
v12
· 2 years ago
spurious_copper_flip
v11
· 2 years ago
spurious_copper_rotate
v10
· 2 years ago
spurious_copper_hue
v9
· 2 years ago
spu_hue
v8
· 2 years ago
spur_rotate
v7
· 2 years ago
spur_flip
v6
· 2 years ago
spur_noise
v5
· 2 years ago
short_noise
v4
· 2 years ago
short_hue
v3
· 2 years ago
short_rotate
v2
· 2 years ago
short_flip
v1
· 2 years ago
v22
open_circuit_noise
Generated on Jan 21, 2023
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
256 Total Images
View All ImagesDataset Split
Train Set 82%
210Images
Valid Set 9%
23Images
Test Set 9%
23Images
Preprocessing
No preprocessing steps were applied.
Augmentations
Outputs per training example: 3
Bounding Box: Noise: Up to 10% of pixels