Dataset Versions
Versions
2024-07-28 9:29am
v32
· 5 months ago
2024-07-26 4:26pm
v31
· 5 months ago
2024-07-26 4:25pm
v30
· 5 months ago
2024-07-26 4:25pm
v29
· 5 months ago
2024-07-26 4:24pm
v28
· 5 months ago
2024-07-26 4:24pm
v27
· 5 months ago
2024-07-26 4:23pm
v26
· 5 months ago
2024-07-20 11:46am
v25
· 5 months ago
2024-07-20 11:44am
v24
· 5 months ago
2024-07-20 11:19am
v23
· 5 months ago
2024-07-20 10:44am
v22
· 5 months ago
2024-07-20 10:14am
v21
· 5 months ago
2024-07-20 9:38am
v20
· 5 months ago
2024-07-20 9:15am
v19
· 5 months ago
2024-07-20 2:59am
v18
· 5 months ago
2024-07-19 12:41pm
v17
· 6 months ago
2024-07-19 12:08pm
v16
· 6 months ago
2024-07-19 9:44am
v15
· 6 months ago
2024-07-19 4:23am
v14
· 6 months ago
2024-07-19 3:54am
v13
· 6 months ago
2024-07-19 3:20am
v12
· 6 months ago
2024-07-19 1:03am
v11
· 6 months ago
2024-07-18 4:39pm
v9
· 6 months ago
2024-07-18 3:48pm
v8
· 6 months ago
2024-07-17 2:42pm
v6
· 6 months ago
2024-07-17 2:40pm
v5
· 6 months ago
2024-07-16 3:14pm
v3
· 6 months ago
2024-07-16 2:49pm
v2
· 6 months ago
2024-07-16 2:28pm
v1
· 6 months ago
v18
2024-07-20 2:59am
Generated on Jul 20, 2024
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
2581 Total Images
View All ImagesDataset Split
Train Set 86%
2220Images
Valid Set 9%
240Images
Test Set 5%
121Images
Preprocessing
Auto-Orient: Applied
Augmentations
Outputs per training example: 3
Flip: Horizontal, Vertical
90° Rotate: Clockwise, Counter-Clockwise, Upside Down
Rotation: Between -45° and +45°
Shear: ±15° Horizontal, ±15° Vertical
Brightness: Between -25% and +25%
Exposure: Between -15% and +15%
Noise: Up to 1.76% of pixels