How to Use the korea_plate Detection API
Use this pre-trained korea_plate computer vision model to retrieve predictions with our hosted API or deploy to the edge. Learn More About Roboflow Inference
Switch Model:
mAP is equal to the average of the Average Precision metric across all classes in a model. Learn more
mAP
Samples from Test Set
Try this model on images
0
fps 0
objects detected 
Roboflow Inference
Inference is Roboflow's open source deployment package for developer-friendly vision inference.
How to Deploy the korea_plate Detection API
Using Roboflow, you can deploy your object detection model to a range of environments, including:
- Raspberry Pi
- NVIDIA Jetson
- A Docker container
- A web page
- A Python script using the Roboflow SDK.
Below, we have instructions on how to use our deployment options.
Code Snippets
Python
JavaScript
## Infer on Local and Hosted Images To install dependencies, `pip install inference-sdk`. Then, add the following code snippet to a Python script: ```python from inference_sdk import InferenceHTTPClient CLIENT = InferenceHTTPClient( api_url="https://outline.roboflow.com", api_key="API_KEY" ) result = CLIENT.infer(your_image.jpg, model_id="MODEL_ENDPOINT/VERSION") ``` [See the inference-sdk docs](https://inference.roboflow.com/inference_helpers/inference_sdk/)
## Node.js We're using [axios](https://github.com/axios/axios) to perform the POST request in this example so first run npm install axios to install the dependency. ### Inferring on a Local Image ```javascript const axios = require("axios"); const fs = require("fs"); const image = fs.readFileSync("YOUR_IMAGE.jpg", { encoding: "base64" }); axios({ method: "POST", url: "https://outline.roboflow.com/MODEL_ENDPOINT/VERSION", params: { api_key: "API_KEY" }, data: image, headers: { "Content-Type": "application/x-www-form-urlencoded" } }) .then(function (response) { console.log(response.data); }) .catch(function (error) { console.log(error.message); }); ``` ### Inferring on an Image Hosted Elsewhere via URL ```javascript const axios = require("axios"); axios({ method: "POST", url: "https://outline.roboflow.com/MODEL_ENDPOINT/VERSION", params: { api_key: "API_KEY", image: "IMAGE_URL" } }) .then(function (response) { console.log(response.data); }) .catch(function (error) { console.log(error.message); }); ```
More Deployment Resources
Roboflow Inference Documentation
Look through our Inference documentation for more information and resources on how to utilize this model.
Example Web App
Use this model with a full fledged web application that has all sample code included.
Deploy to NVIDIA Jetson
Perform inference at the edge with a Jetson via our Docker container.
Deploy Mobile iOS
Utilize your model on your mobile device.
Similar Projects
See More

28 images


42 images


815 images2 models


1000 images3 models


1049 images2 models