Dataset Versions
Versions
2024-10-26 7:09am
v28
· 2 months ago
2024-08-18 8:37am
v27
· 5 months ago
2024-08-18 8:35am
v26
· 5 months ago
2024-08-17 8:25am
v24
· 5 months ago
2024-08-17 7:56am
v23
· 5 months ago
2024-08-17 7:56am
v22
· 5 months ago
2024-08-17 6:44am
v21
· 5 months ago
2024-08-17 6:33am
v20
· 5 months ago
2024-08-17 4:21am
v19
· 5 months ago
2024-08-16 12:44pm
v18
· 5 months ago
2024-08-16 12:43pm
v17
· 5 months ago
2024-08-11 8:44am
v15
· 5 months ago
2024-08-11 6:49am
v14
· 5 months ago
2024-08-11 6:47am
v13
· 5 months ago
2024-08-11 6:42am
v12
· 5 months ago
2024-07-14 10:23am
v11
· 6 months ago
2024-07-10 6:20am
v10
· 6 months ago
2024-07-10 4:23am
v9
· 6 months ago
2024-07-10 4:05am
v8
· 6 months ago
2024-07-09 2:25pm
v6
· 6 months ago
2024-07-09 1:03pm
v4
· 6 months ago
2024-07-09 11:56am
v3
· 6 months ago
2024-07-09 9:09am
v2
· 6 months ago
2024-07-09 5:49am
v1
· 6 months ago
v14
2024-08-11 6:49am
Generated on Aug 11, 2024
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
346 Total Images
View All ImagesDataset Split
Train Set 71%
246Images
Valid Set 29%
100Images
Test Set %
0Images
Preprocessing
Auto-Orient: Applied
Resize: Fit within 680x680
Filter Null: Require all images to contain annotations.
Augmentations
Outputs per training example: 3
90° Rotate: Clockwise, Counter-Clockwise, Upside Down
Brightness: Between -14% and +14%
Exposure: Between -11% and +11%
Noise: Up to 0% of pixels