Dataset Versions
Versions
2024-04-02 11:57am
v26
· 9 months ago
2024-04-02 11:53am
v25
· 9 months ago
v4.5 Small - 2x2
v22
· 9 months ago
v4.5 Large - 960
v21
· 9 months ago
v4.5 Small - 4x4
v20
· 9 months ago
v4.4 Small - 2x2
v19
· 9 months ago
v4.4 Small - 4x4
v18
· 9 months ago
v4.4 Large - 960
v17
· 9 months ago
v4.3 Large - 960
v16
· 9 months ago
v4.2.2 - SI - 2x2 - NA
v15
· 9 months ago
v4.2.1 - SI - 4x4 - NA
v14
· 9 months ago
v4.2 - Small Items - 4x4 - No Aug
v13
· 9 months ago
v4.2 - Large Items - 960px
v12
· 9 months ago
v4.1 - Large Items - 960px
v11
· 9 months ago
v4 - Large Items - 960px
v10
· 10 months ago
v4 - Small Items - 4x4 Tile
v9
· 10 months ago
v4 - All Items - 2000px
v8
· 10 months ago
v4 - Small Items - 2x2 Tile
v7
· 10 months ago
v4 - Large Items
v6
· 10 months ago
v3 - Large Items
v5
· 10 months ago
v2 - 2x2 Tile
v4
· 10 months ago
v2 - Large Items
v3
· 10 months ago
v1 - 2x2 Tile
v2
· 10 months ago
v1 - No Tile
v1
· 10 months ago
v6
v4 - Large Items
Generated on Feb 28, 2024
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
667 Total Images
View All ImagesDataset Split
Train Set 94%
630Images
Valid Set 4%
25Images
Test Set 2%
12Images
Preprocessing
Auto-Orient: Applied
Resize: Stretch to 640x640
Modify Classes: 0 remapped, 2 dropped
Augmentations
Outputs per training example: 7
90° Rotate: Clockwise, Counter-Clockwise, Upside Down
Rotation: Between -7° and +7°
Shear: ±5° Horizontal, ±5° Vertical