Dataset Versions
Versions
2024-04-10 12:01pm
v25
· 9 months ago
2024-04-10 12:01pm
v24
· 9 months ago
2024-02-14 9:27am
v23
· a year ago
2024-02-13 10:12pm
v22
· a year ago
2024-02-13 12:03pm
v21
· a year ago
2024-02-12 9:25pm
v20
· a year ago
2024-02-12 2:23pm
v19
· a year ago
2024-01-31 11:54am
v18
· a year ago
2024-01-31 11:27am
v17
· a year ago
2024-01-26 9:34pm
v16
· a year ago
2024-01-20 10:46pm
v15
· a year ago
2024-01-20 8:19pm
v14
· a year ago
2024-01-20 7:32pm
v13
· a year ago
2024-01-20 2:43pm
v12
· a year ago
2024-01-20 1:57pm
v11
· a year ago
2024-01-20 12:51pm
v10
· a year ago
2024-01-18 1:22pm
v9
· a year ago
2024-01-17 10:50pm
v8
· a year ago
2024-01-17 10:49pm
v7
· a year ago
2024-01-17 10:33pm
v6
· a year ago
2024-01-17 10:10pm
v5
· a year ago
2024-01-17 8:28pm
v4
· a year ago
2024-01-17 7:57pm
v3
· a year ago
2024-01-17 7:17pm
v2
· a year ago
2024-01-17 6:29pm
v1
· a year ago
v7
2024-01-17 10:49pm
Generated on Jan 17, 2024
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
69 Total Images
View All ImagesDataset Split
Train Set 83%
57Images
Valid Set 9%
6Images
Test Set 9%
6Images
Preprocessing
Auto-Orient: Applied
Resize: Stretch to 640x640
Augmentations
Outputs per training example: 3
Crop: 0% Minimum Zoom, 20% Maximum Zoom