Dataset Versions
Versions
2024-05-29 12:10pm
v21
· 6 months ago
2024-05-27 2:57pm
v20
· 6 months ago
2024-05-27 2:29pm
v19
· 6 months ago
2024-05-27 1:50pm
v18
· 6 months ago
2024-05-27 1:39pm
v17
· 6 months ago
2024-05-27 11:52am
v16
· 6 months ago
2024-05-27 11:11am
v15
· 6 months ago
2024-05-27 1:16am
v14
· 6 months ago
2024-05-23 6:35pm
v13
· 6 months ago
2024-05-22 2:54pm
v12
· 6 months ago
2024-05-22 12:54pm
v11
· 6 months ago
2024-05-22 12-39pm not version
v10
· 6 months ago
2024-05-22 12-20pm not version
v9
· 6 months ago
2024-05-22 11-48am not version
v8
· 6 months ago
2024-05-22 11-23am yes
v7
· 6 months ago
2024-05-21 3:32pm
v6
· 6 months ago
2024-05-21 2-54pm yes test haval
v5
· 6 months ago
2024-05-21 1-27pm not version
v4
· 6 months ago
2024-05-20 5-35pm not version
v3
· 6 months ago
2024-05-12 3-20pm True best.pt
v2
· 7 months ago
2024-05-09 10-25pm not version
v1
· 7 months ago
v8
2024-05-22 11-48am not version
Generated on May 22, 2024
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
1372 Total Images
View All ImagesDataset Split
Train Set 97%
1326Images
Valid Set 3%
46Images
Test Set %
0Images
Preprocessing
Auto-Orient: Applied
Resize: Fit (black edges) in 640x640
Augmentations
Outputs per training example: 3
Blur: Up to 1px
Noise: Up to 3.82% of pixels
Cutout: 8 boxes with 15% size each