Dataset Versions
Versions
2025-01-07 7:36am
v28
· 17 days ago
2025-01-06 9:02pm
v27
· 17 days ago
2025-01-06 8:50pm
v26
· 17 days ago
2025-01-06 7:28am
v25
· 18 days ago
2025-01-06 6:07am
v24
· 18 days ago
2025-01-05 9:59pm
v23
· 18 days ago
2025-01-05 9:24pm
v22
· 18 days ago
2025-01-05 6:58pm
v21
· 19 days ago
2025-01-05 6:31pm
v20
· 19 days ago
2025-01-05 2:22pm
v19
· 19 days ago
2025-01-05 10:22am
v18
· 19 days ago
2025-01-05 9:45am
v17
· 19 days ago
2025-01-05 8:35am
v16
· 19 days ago
2025-01-05 7:57am
v15
· 19 days ago
2025-01-05 6:14am
v14
· 19 days ago
2025-01-04 10:29pm
v13
· 19 days ago
2025-01-04 10:20pm
v12
· 19 days ago
2025-01-04 9:47pm
v11
· 19 days ago
2025-01-04 5:30pm
v10
· 20 days ago
2025-01-04 5:18pm
v9
· 20 days ago
2025-01-04 4:38pm
v8
· 20 days ago
2025-01-04 4:14pm
v7
· 20 days ago
2025-01-04 4:06pm
v6
· 20 days ago
2025-01-04 3:37pm
v5
· 20 days ago
2025-01-04 3:29pm
v4
· 20 days ago
2025-01-03 10:28pm
v3
· 20 days ago
2025-01-03 10:01pm
v2
· 20 days ago
2025-01-03 9:56pm
v1
· 20 days ago
v23
2025-01-05 9:59pm
Generated on Jan 5, 2025
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
687 Total Images
View All ImagesDataset Split
Train Set 89%
609Images
Valid Set 9%
60Images
Test Set 3%
18Images
Preprocessing
Auto-Orient: Applied
Resize: Stretch to 640x640
Auto-Adjust Contrast: Using Adaptive Equalization
Augmentations
Outputs per training example: 3
Flip: Horizontal
90° Rotate: Clockwise, Counter-Clockwise
Saturation: Between -25% and +25%
Exposure: Between -24% and +24%
Noise: Up to 2.47% of pixels