Dataset Versions
Versions
2023-03-28 11:39am
v24
· 2 years ago
2023-03-28 10:51am
v23
· 2 years ago
2023-03-28 10:16am
v22
· 2 years ago
2023-03-24 12:11pm
v21
· 2 years ago
2023-03-24 10:23am
v20
· 2 years ago
2023-03-23 1:16pm
v19
· 2 years ago
2023-03-23 11:44am
v18
· 2 years ago
2023-03-17 3:31pm
v17
· 2 years ago
2023-03-14 6:34pm
v16
· 2 years ago
2023-03-14 3:13pm
v15
· 2 years ago
2023-03-14 1:57pm
v14
· 2 years ago
2023-03-14 12:32pm
v13
· 2 years ago
2023-03-08 3:21pm
v12
· 2 years ago
2023-03-08 10:42am
v11
· 2 years ago
2023-03-07 10:22am
v10
· 2 years ago
2023-02-25 2:39pm
v9
· 2 years ago
2023-02-23 10:10am
v8
· 2 years ago
2023-02-22 10:55am
v7
· 2 years ago
2023-02-21 3:37pm
v6
· 2 years ago
2023-02-20 2:07am
v5
· 2 years ago
2023-02-20 2:06am
v4
· 2 years ago
2023-02-20 1:16am
v3
· 2 years ago
2023-02-17 4-43pm
v2
· 2 years ago
2023-02-17 3:06am
v1
· 2 years ago
v13
2023-03-14 12:32pm
Generated on Mar 14, 2023
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
1062 Total Images
View All ImagesDataset Split
Train Set 66%
700Images
Valid Set 34%
362Images
Test Set %
0Images
Preprocessing
Auto-Orient: Applied
Resize: Stretch to 640x640
Augmentations
Outputs per training example: 1
Flip: Horizontal, Vertical
Shear: ±10° Horizontal, ±10° Vertical
Saturation: Between -20% and +20%
Brightness: Between -15% and +15%