Dataset Versions
Versions
2023-08-11 12:15pm
v25
· a year ago
2023-08-11 12:14pm
v24
· a year ago
2023-08-11 12:12pm
v23
· a year ago
2023-08-11 12:09pm
v22
· a year ago
2023-08-11 12:09pm
v21
· a year ago
2023-08-11 12:06pm
v20
· a year ago
2023-08-11 10:41am
v19
· a year ago
2023-08-01 11:28am
v17
· a year ago
2023-08-01 10:19am
v16
· a year ago
2023-08-01 10:18am
v15
· a year ago
2023-07-31 3:47pm
v14
· a year ago
2023-07-31 3:45pm
v13
· a year ago
2023-07-13 1:52pm
v11
· 2 years ago
2023-07-13 1:45pm
v10
· 2 years ago
2023-07-13 1:45pm
v9
· 2 years ago
2023-07-13 12:40pm
v7
· 2 years ago
2023-07-13 12:28pm
v6
· 2 years ago
2023-07-12 8:11am
v5
· 2 years ago
2023-07-06 9:01am
v4
· 2 years ago
2023-06-28 12:24pm
v3
· 2 years ago
2023-06-22 11:28am
v2
· 2 years ago
2023-06-22 11:24am
v1
· 2 years ago
v16
2023-08-01 10:19am
Generated on Aug 1, 2023
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
1793 Total Images
View All ImagesDataset Split
Train Set 87%
1560Images
Valid Set 9%
170Images
Test Set 4%
63Images
Preprocessing
Auto-Orient: Applied
Resize: Stretch to 640x640
Modify Classes: 11 remapped, 11 dropped
Filter Null: Require all images to contain annotations.
Augmentations
Outputs per training example: 3
Saturation: Between -15% and +15%
Brightness: Between -5% and +5%
Exposure: Between -5% and +5%
Noise: Up to 1% of pixels