Dataset Versions
Versions
2023-01-11 1:35pm
v23
· 2 years ago
2023-01-10 4:40pm
v22
· 2 years ago
2023-01-10 4:39pm
v21
· 2 years ago
2023-01-10 4:38pm
v20
· 2 years ago
2023-01-10 4:36pm
v19
· 2 years ago
2023-01-10 4:35pm
v18
· 2 years ago
2023-01-10 4:35pm
v17
· 2 years ago
2023-01-10 4:33pm
v16
· 2 years ago
2023-01-10 4:32pm
v15
· 2 years ago
2023-01-10 10:20am
v14
· 2 years ago
2023-01-10 10:19am
v13
· 2 years ago
2023-01-10 10:17am
v12
· 2 years ago
2023-01-10 10:16am
v11
· 2 years ago
2023-01-10 10:16am
v10
· 2 years ago
2023-01-10 10:15am
v9
· 2 years ago
2023-01-10 10:14am
v8
· 2 years ago
2023-01-10 10:13am
v7
· 2 years ago
2023-01-10 9:36am
v6
· 2 years ago
2023-01-05 2:04pm
v5
· 2 years ago
2023-01-05 10:27am
v4
· 2 years ago
2023-01-04 8:46am
v3
· 2 years ago
2023-01-04 8:43am
v2
· 2 years ago
2023-01-03 1:40pm
v1
· 2 years ago
v23
2023-01-11 1:35pm
Generated on Jan 11, 2023
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
678 Total Images
View All ImagesDataset Split
Train Set 100%
678Images
Valid Set %
0Images
Test Set %
0Images
Preprocessing
Auto-Orient: Applied
Resize: Stretch to 640x640
Modify Classes: 0 remapped, 0 dropped
Filter Null: Require all images to contain annotations.
Augmentations
Outputs per training example: 3
Rotation: Between -16° and +16°
Shear: ±45° Horizontal, ±0° Vertical
Saturation: Between -25% and +25%
Brightness: Between 0% and +50%
Exposure: Between -25% and +25%