Dataset Versions
Versions
2023-12-22 8:31pm
v25
· a year ago
2023-12-23 3:49pm
v24
· a year ago
2023-12-23 1:22pm
v23
· a year ago
2023-12-23 1:22pm
v22
· a year ago
2023-12-23 1:22pm
v21
· a year ago
2023-12-23 1:22pm
v20
· a year ago
2023-12-23 1:22pm
v19
· a year ago
2023-12-23 1:22pm
v18
· a year ago
2023-12-23 1:19pm
v17
· a year ago
2023-12-22 2:19am
v16
· a year ago
2023-12-21 11:48pm
v15
· a year ago
2023-12-21 7:39pm
v14
· a year ago
2023-12-21 7:38pm
v13
· a year ago
2023-12-21 7:38pm
v12
· a year ago
2023-12-21 7:38pm
v11
· a year ago
2023-12-21 7:38pm
v10
· a year ago
2023-12-21 7:38pm
v9
· a year ago
2023-12-21 7:38pm
v8
· a year ago
2023-12-21 7:38pm
v7
· a year ago
2023-12-21 7:38pm
v6
· a year ago
2023-12-21 7:38pm
v5
· a year ago
2023-12-21 7:38pm
v4
· a year ago
2023-12-21 7:38pm
v3
· a year ago
2023-12-20 6:16pm
v2
· a year ago
2023-12-20 6:09pm
v1
· a year ago
v17
2023-12-23 1:19pm
Generated on Dec 23, 2023
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
553 Total Images
View All ImagesDataset Split
Train Set 92%
510Images
Valid Set 7%
40Images
Test Set 1%
3Images
Preprocessing
Auto-Orient: Applied
Resize: Stretch to 640x640
Augmentations
Outputs per training example: 3
Rotation: Between -15° and +15°
Exposure: Between -25% and +25%
Noise: Up to 1% of pixels
Bounding Box: Rotation: Between -5° and +5°