Dataset Versions
Versions
2024-11-25 5:27pm
v31
· 2 months ago
2024-03-23 10:35pm
v25
· 10 months ago
2024-03-15 4:49pm
v24
· 10 months ago
2024-03-15 4:49pm
v22
· 10 months ago
2024-03-15 4:46pm
v21
· 10 months ago
2024-01-25 5:30pm
v18
· a year ago
2024-01-17 2:12am
v17
· a year ago
2024-01-06 12:45pm
v16
· a year ago
2024-01-04 11:11am
v15
· a year ago
2024-01-01 1:15pm
v14
· a year ago
2024-01-01 12:21am
v13
· a year ago
2023-12-30 9:31pm
v12
· a year ago
2023-12-30 7:06pm
v11
· a year ago
2023-12-30 4:34pm
v10
· a year ago
2023-12-22 11:37am
v9
· a year ago
2023-12-19 6:11pm
v8
· a year ago
2023-12-06 9:46pm
v7
· a year ago
2023-11-26 7:13pm
v6
· a year ago
2023-11-16 9:00pm
v5
· a year ago
2023-11-05 1:30am
v4
· a year ago
2023-11-05 12:42am
v3
· a year ago
2023-11-04 7:01pm
v2
· a year ago
2023-11-04 4:19pm
v1
· a year ago
v25
2024-03-23 10:35pm
Generated on Mar 23, 2024
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
3094 Total Images
View All ImagesDataset Split
Train Set 91%
2802Images
Valid Set 9%
292Images
Test Set %
0Images
Preprocessing
Auto-Orient: Applied
Resize: Fit (white edges) in 640x640
Modify Classes: 1 remapped, 0 dropped
Augmentations
Outputs per training example: 3
Brightness: Between -8% and +8%
Exposure: Between -8% and +8%
Blur: Up to 1px
Noise: Up to 1% of pixels
Mosaic: Applied