Dataset Versions
Versions
base_dataset
v26
· 3 months ago
bb_noise_0ponto3
v25
· 3 months ago
bb_blur_2ponto5px
v24
· 3 months ago
bb_exposure_10percent
v23
· 3 months ago
bb_brightness_15percent
v22
· 3 months ago
bb_shear_10graus
v21
· 3 months ago
bb_rotation_15graus
v20
· 3 months ago
bb_crop_20percent
v19
· 3 months ago
bb_rotacao_90graus
v18
· 3 months ago
bb_flip_horizontal_vertical
v17
· 3 months ago
mosaic
v16
· 3 months ago
cutout_count3_10percent
v15
· 3 months ago
noise_0ponto3percent
v14
· 3 months ago
blur_2ponto5px
v13
· 3 months ago
exposure_10percent
v12
· 3 months ago
brightness_20percent
v11
· 3 months ago
saturation_25percent
v10
· 3 months ago
hue_20percent
v9
· 3 months ago
grayscale_15percent
v8
· 3 months ago
shear_10percent
v7
· 3 months ago
rotate_15percent
v6
· 3 months ago
crop_20percent
v5
· 3 months ago
giro_90_graus_ambos_lados
v4
· 3 months ago
flip_horizontal_vertical
v3
· 3 months ago
v10
saturation_25percent
Generated on Sep 19, 2024
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
1396 Total Images
View All ImagesDataset Split
Train Set 87%
1217Images
Valid Set 8%
118Images
Test Set 4%
61Images
Preprocessing
Auto-Orient: Applied
Resize: Stretch to 640x640
Augmentations
Outputs per training example: 3
Saturation: Between -25% and +25%