Dataset Versions
Versions
2023-04-11 11:44pm
v25
· 2 years ago
2023-04-11 10:31pm
v24
· 2 years ago
2023-04-11 10:29pm
v23
· 2 years ago
2023-04-11 10:28pm
v22
· 2 years ago
2023-04-11 10:28pm
v21
· 2 years ago
2023-04-11 10:27pm
v20
· 2 years ago
2023-04-11 10:27pm
v19
· 2 years ago
2023-04-11 10:24pm
v18
· 2 years ago
2023-04-11 10:24pm
v17
· 2 years ago
2023-04-11 10:23pm
v16
· 2 years ago
2023-04-11 10:22pm
v15
· 2 years ago
2023-04-11 10:06pm
v14
· 2 years ago
2023-04-11 10:04pm
v13
· 2 years ago
2023-04-11 10:03pm
v12
· 2 years ago
2023-04-11 10:02pm
v11
· 2 years ago
2023-04-11 10:01pm
v10
· 2 years ago
2023-04-11 10:00pm
v9
· 2 years ago
2023-04-11 9:59pm
v8
· 2 years ago
2023-04-11 9:58pm
v7
· 2 years ago
2023-04-11 9:57pm
v6
· 2 years ago
2023-04-11 9:56pm
v5
· 2 years ago
2023-04-11 9:55pm
v4
· 2 years ago
2023-04-11 9:54pm
v3
· 2 years ago
2023-04-11 9:53pm
v2
· 2 years ago
2023-04-11 9:52pm
v1
· 2 years ago
v23
2023-04-11 10:29pm
Generated on Apr 12, 2023
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
10 Total Images
View All ImagesDataset Split
Train Set 100%
10Images
Valid Set %
0Images
Test Set %
0Images
Preprocessing
Resize: Stretch to 640x640
Augmentations
Outputs per training example: 2
Crop: 25% Minimum Zoom, 56% Maximum Zoom