Dataset Versions
Versions
version 20 field images from Bogense added
v32
· 3 years ago
version 19 sample images from field
v31
· 3 years ago
version 18 removed unverifiable images
v30
· 3 years ago
version 17 without flock label
v29
· 3 years ago
version 16 images added
v28
· 3 years ago
version 15 improved bounding box
v27
· 3 years ago
version 14 image size 640px
v21
· 3 years ago
version 13 aspect ratio fit
v20
· 3 years ago
new version 13 4x bounding box
v19
· 3 years ago
version 13 4x bounding box
v18
· 3 years ago
version 12 4x bounding box only
v17
· 3 years ago
dataset version 11
v16
· 3 years ago
version 10 image and bounding box augmentation
v15
· 3 years ago
version 10 bounding box only augmentation
v14
· 3 years ago
added hue version 7
v13
· 3 years ago
added mosaic version 8
v12
· 3 years ago
version 7
v11
· 3 years ago
version 6
v10
· 3 years ago
version 5
v9
· 3 years ago
version 4
v6
· 3 years ago
version 3
v5
· 3 years ago
version 2 expanded
v3
· 3 years ago
version 2
v2
· 3 years ago
version 1
v1
· 3 years ago
v11
version 7
Generated on Oct 13, 2021
Popular Download Formats
YOLOv11
TXT annotations and YAML config used with YOLOv11.
YOLOv9
TXT annotations and YAML config used with YOLOv9.
YOLOv8
TXT annotations and YAML config used with YOLOv8.
YOLOv5
TXT annotations and YAML config used with YOLOv5.
YOLOv7
TXT annotations and YAML config used with YOLOv7.
COCO JSON
COCO JSON annotations are used with EfficientDet Pytorch and Detectron 2.
YOLO Darknet
Darknet TXT annotations used with YOLO Darknet (both v3 and v4) and YOLOv3 PyTorch.
Pascal VOC XML
Common XML annotation format for local data munging (pioneered by ImageNet).
TFRecord
TFRecord binary format used for both Tensorflow 1.5 and Tensorflow 2.0 Object Detection models.
PaliGemma
PaliGemma JSONL format used for fine-tuning PaliGemma, Google's open multimodal vision model.
CreateML JSON
CreateML JSON format is used with Apple's CreateML and Turi Create tools.
Other Formats
Choose another format.
2050 Total Images
View All ImagesDataset Split
Train Set 86%
1755Images
Valid Set 9%
190Images
Test Set 5%
105Images
Preprocessing
Auto-Orient: Applied
Resize: Stretch to 416x416
Filter Null: Require all images to contain annotations.
Augmentations
Outputs per training example: 3
Flip: Horizontal, Vertical
90° Rotate: Clockwise, Counter-Clockwise
Rotation: Between -15° and +15°
Shear: ±15° Horizontal, ±15° Vertical
Bounding Box: Brightness: Between -25% and +25%
Bounding Box: Blur: Up to 10px
Bounding Box: Noise: Up to 5% of pixels