Mohamed Traore

Chest X-Rays

Classification

2

Chest X-Rays Computer Vision Project

TRY THIS MODEL
Drop an image or

Images

5824 images
Explore Dataset

This classification dataset is from Kaggle and was uploaded to Kaggle by Paul Mooney.

It contains over 5,000 images of chest x-rays in two categories: "PNEUMONIA" and "NORMAL."

  • Version 1 contains the raw images, and only has the pre-processing feature of "Auto-Orient" applied to strip out EXIF data, and ensure all images are "right side up."
  • Version 2 contains the raw images with pre-processing features of "Auto-Orient" and Resize of 640 by 640 applied
  • Version 3 was trained with Roboflow's model architecture for classification datasets and contains the raw images with pre-processing features of "Auto-Orient" and Resize of 640 by 640 applied + augmentations:
    • Outputs per training example: 3
    • Shear: ±3° Horizontal, ±2° Vertical
    • Saturation: Between -5% and +5%
    • Brightness: Between -5% and +5%
    • Exposure: Between -5% and +5%

Below you will find the description provided on Kaggle:

Context

http://www.cell.com/cell/fulltext/S0092-8674(18)30154-5 Figure S6 Figure S6. Illustrative Examples of Chest X-Rays in Patients with Pneumonia, Related to Figure 6 The normal chest X-ray (left panel) depicts clear lungs without any areas of abnormal opacification in the image. Bacterial pneumonia (middle) typically exhibits a focal lobar consolidation, in this case in the right upper lobe (white arrows), whereas viral pneumonia (right) manifests with a more diffuse ‘‘interstitial’’ pattern in both lungs. http://www.cell.com/cell/fulltext/S0092-8674(18)30154-5

Content

The dataset is organized into 3 folders (train, test, val) and contains subfolders for each image category (Pneumonia/Normal). There are 5,863 X-Ray images (JPEG) and 2 categories (Pneumonia/Normal).

Chest X-ray images (anterior-posterior) were selected from retrospective cohorts of pediatric patients of one to five years old from Guangzhou Women and Children’s Medical Center, Guangzhou. All chest X-ray imaging was performed as part of patients’ routine clinical care.

For the analysis of chest x-ray images, all chest radiographs were initially screened for quality control by removing all low quality or unreadable scans. The diagnoses for the images were then graded by two expert physicians before being cleared for training the AI system. In order to account for any grading errors, the evaluation set was also checked by a third expert.

Acknowledgements

Data: https://data.mendeley.com/datasets/rscbjbr9sj/2

License: CC BY 4.0

Citation: http://www.cell.com/cell/fulltext/S0092-8674(18)30154-5 citation - latest version (Kaggle)

Inspiration

Automated methods to detect and classify human diseases from medical images.

Trained Model API

This project has a trained model available that you can try in your browser and use to get predictions via our Hosted Inference API and other deployment methods.

Connect Your Model With Program Logic

Find utilities and guides to help you start using the Chest X-Rays project in your project.

Last Updated

2 years ago

Project Type

Classification

Subject

Pneumonia

Views: 8698

Views in previous 30 days: 807

Downloads: 348

Downloads in previous 30 days: 36

License

CC BY 4.0

Classes

NORMAL PNEUMONIA